• Title/Summary/Keyword: 철근 형상 코드

Search Result 6, Processing Time 0.02 seconds

A Basic Study of Automatic Rebar Length Estimate Algorithm of Columns by Using BIM-Based Shape Codes Built in Revit (BIM 기반 형상코드를 이용한 기둥 철근길이 자동 산정 기초 연구)

  • Oh, Jin-Hyuk;Kim, Sun-Kuk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.21-22
    • /
    • 2023
  • In reinforced concrete constructions, reinforcing bar generates more CO2 per unit weight than other construction materials. In particular, cutting and bending rebar is the main source of rebar waste in the construction industry. Rebar-cutting waste is inevitable during the construction of a reinforced concrete structure since the rebar is not manufactured as designed. Large amounts of waste can be avoided by utilizing optimal cutting patterns and schedules. This research provides a fundamental analysis of the automatic calculation of column rebar length using BIM-based shape codes to minimize cutting waste to near zero. By employing this approach in practice, it is possible to minimize the rate of rebar-cutting waste, reduce costs, shorten construction duration, and reduce CO2 emissions. In addition, the development of this research will serve as a clue for the development of BIM-based rebar layout automation algorithms.

  • PDF

A Basic Study of Automatic Estimation Algorithm on the Rebar Length of Beam by Using BIM-Based Shape Codes Built in Revit (BIM 기반 형상코드를 이용한 보 철근길이 자동 산장 기초 연구)

  • Widjaja, Daniel Darma;Kim, Sunkuk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.167-168
    • /
    • 2023
  • Construction of reinforced concrete structures required massive amounts of concrete and steel rebar. The current procedure to estimate the quantity of rebar requires tedious and time-consuming manual labor. Consequently, this circumstance made the engineers vulnerable to error and mistake, which led to the rebar waste. No system that is capable of automatically calculating rebar length has yet been developed Thus, this study proposes a preliminary investigation of automatic rebar length estimation of beam element by using BIM-based shape codes drawn in Revit. Beam is chosen due to its complexity in the rebar arrangement. In addition, the development of this study could assist engineers on the construction site and effectively contribute to the minimization of rebar waste in the future.

  • PDF

A Basic Study of Automatic Rebar Length Estimate Algorithm of Bearing Wall by Using BIM-Based Shape Codes Built in Revit (BIM 기반 형상코드를 이용한 내력벽 철근길이 자동 산정 기초 연구)

  • Lim, Jeeyoung;Kim, Sunkuk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.79-80
    • /
    • 2023
  • Reinforced concrete structures require large amounts of concrete and rebar in the construction stage. Rebar is a major resource for reinforced concrete structures, and generates more CO2 per unit weight than other materials. To solve this problem, it was confirmed that the cutting waste can be close to zero when the special length of the rebar is calculated in the drawing created after structural design. However, a system for automatically calculating the length of reinforcing bars to efficiently calculate the total amount of reinforcing bars has not been established. Therefore, the objective of this study is a basic study of automatic rebar length estimate algorithm of bearing wall by using BIM-based shape codes built in Revit. The bearing wall rebar can be automatically derived using the developed model. Furthermore, through applying the developed model to the construction field, it will greatly contribute to reducing greenhouse gas emissions by reducing rebar cutting waste.

  • PDF

A Basic Study of Automatic Rebar Length Estimate Algorithm of Slab by Using BIM-Based Shape Codes Built in Revit (BIM 기반 형상코드를 이용한 슬래브 철근길이 자동 산정 기초 연구)

  • JI, Woo-Min;Kim, Sun-Kuk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.89-90
    • /
    • 2023
  • This dissertation investigates the feasibility of accurately calculating the required rebar length using BIM-based shape codes and the potential benefits of such an approach in terms of cost reduction, waste reduction, and environmental improvement. The study aims to explore the possibility of automatically calculating slab rebar length before construction to reduce rebar cutting waste and cost. The results of this study will provide insights into the potential of using shape codes to reduce rebar cutting waste and cost in building frame construction.

  • PDF

Development of an Algorithm for Automatic Quantity Take-off of Slab Rebar (슬래브 철근 물량 산출 자동화 알고리즘 개발)

  • Kim, Suhwan;Kim, Sunkuk;Suh, Sangwook;Kim, Sangchul
    • Korean Journal of Construction Engineering and Management
    • /
    • v.24 no.5
    • /
    • pp.52-62
    • /
    • 2023
  • The objective of this study is to propose an automated algorithm for precise cutting length of slab rebar complying with regulations such as anchorage length, standard hooks, and lapping length. This algorithm aims to improve the traditional manual quantity take-off process typically outsourced by external contractors. By providing accurate rebar quantity data at BBS(Bar Bending Schedule) level from the bidding phase, uncertainty in quantity take-off can be eliminated and reliance on out-sourcing reduced. In addition, the algorithm allows for early determination of precise quantities, enabling construction firms to preapre competitive and optimized bids, leading to increased profit margins during contract negotiations. The proposed algorithm not only streamlines redundant tasks across various processes, including estimating, budgeting, and BBS generation but also offers flexibility in handling post-contract structural drawing changes. In particular, the proposed algorithm, when combined with BIM, can solve the technical problems of using BIM in the early phases of construction, and the algorithm's formulas and shape codes that built as REVIT-based family files, can help saving time and manpower.

An Evaluation of Blast Resistance Performance of RC Columns According to the Shape of Cross Section (단면의 형상에 따른 철근콘크리트 기둥의 폭발저항 성능 평가)

  • Kim, Han-Soo;Park, Jae-Pyo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.4
    • /
    • pp.387-394
    • /
    • 2010
  • The alternative load path method based on a column removal scenario has been commonly used to protect building structures from being progressively collapsed due to probable blast loading. However, this method yields highly conservative result when the columns still have substantial load resisting capacity after blast. In this study, the behavior of RC columns with rectangular and circular sections under the blast loading was investigated and the remaining capacity of the partially damaged columns was compared. AUTODYN which is a hydrocode for the analysis of the structure on the impact and blast loading was used for this study. The blast loading was verified with the experiment results. The analysis results showed that the circular columns are preferable to the rectangular ones in respect of the blast resistance performance.