• Title/Summary/Keyword: 철근 보강

Search Result 1,153, Processing Time 0.03 seconds

A Study for the Reinforcement of Concrete Beam and Slab with Composite Beam (복합재료보를 이용한 콘크리트 보와 슬래브의 보강에 대한 연구)

  • Kwon, Min-Ho;Kim, Doo-Kie;Shin, Hong-Young;Kim, Ki-Hong
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2009.04a
    • /
    • pp.255-258
    • /
    • 2009
  • 본 논문에서는 최근 건축구조물의 보수보강에 사용되고 있는 복합재료보의 정확한 보강성능을 규명하기 위하여 다양한 실물 실험을 수행하였으며 실험 결과를 검토하여 실제 보강효과를 검증하였다. 콘크리트의 재료비선형을 고려할 수 있는 수치해석 기법으로 실험결과를 재현하여 보강효과를 수치해석적으로 검증하였으며 복합재료보를 이용하였을 경우 확보할 수 있는 보강효과에 대하여 연구하였다. 일반적인 철근콘크리트 구조물에 복합재료보를 이용하여 보강하였을 경우, 약 80% 내외의 하중 증가효과를 확보할 수 있었다. 또한 수치해석을 통하여 보강효과를 검토한 결과, 실물실험과 유사한 결과를 얻을 수 있었으며 복합재료보의 시공시 사용되는 전단연결재의 효과를 고려한다면 거의 동일한 결과를 얻을 수 있을 것으로 판단된다. 현재까지의 연구결과, 복합재료보를 이용하여 구조물을 보강한 경우, 취성이 증가하는 것으로 알려져있으나 추가적인 연구를 통하여 연성을 확보할 수 있는 복합재료보의 연구개발이 가능할 것으로 예상된다.

  • PDF

Effect of T-Plate Anchorage on the Flexural Behavior of Reinforced Concrete Columns Strengthened with Wire Rope Units (와이어로프로 보강된 철근콘크리트 기둥의 휨 거동에 대한 강판 정착의 영향)

  • Sim, Jae-Il;Yang, Keun-Hyeok;Byun, Hang-Yong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.493-494
    • /
    • 2009
  • Two strengthened columns and an unstrengthened control column were tested to failure under cyclic lateral load combined with a constant axial load to effect of anchorage of T-shaped steel plate in the strengthened column using wire rope units. Main variables considered were anchorage method of T-shaped steel plate. Tested columns were compared with those of conventionally tied columns tested by research of before. Test results showed that lateral load capacity and the displacement ductility ratio of anchorage of T-shaped steel plate in the strengthened column increased 40% and 130% than unstrengthened column, respectively. In particular, at the same effective lateral reinforcement index, a much ductility ratio was observed in the strengthened columns than in the tied columns.

  • PDF

Ductility Improvement of Square RC Columns by Using Continuous Spiral Stirrup (연속 횡방향철근 개발을 통한 사각기둥의 연성화)

  • Cho, Kyung Hun;Lee, Tae Hee;Lee, Jung Bin;Kim, Sung Bo;Kim, Jang Jay Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.2
    • /
    • pp.149-156
    • /
    • 2023
  • Recently, concerns about natural disasters such as earthquakes, tsunamis and typhoons have increased. As the magnitude and frequency of earthquakes increase, research is needed to prevent structures from collapsing due to earthquake loads. Research is needed to increase the ductility of columns to prevent the collapse of structures. In this study, the ductility improvement of square columns achieved by applying spiral stirrups to square columns. Square columns reinforced with spiral stirrups are more resistant to repetitive loads such as seismic loads than columns reinforced with tie stirrups. Also, the spiral stirrups can apply better confinement to the concrete. In this study, an uniaxial compression test was conducted to evaluate the performance of columns reinforced with spiral stirrups. The results showed that the columns reinforced with spiral stirrups in both the circular and square columns showed higher compressive strength than the columns reinforced with the tie stirrups. In addition, the columns reinforced with spiral stirrups for both the square and circle columns, showed a tendency to endure the load even after the initial cracking and rebar yielding.

An Experimental Study on the Shear Behavior of RC Beams Strengthened with Near Surface Mounted and Externally Bonded CFRP Strips (표면매입 및 외부부착 탄소섬유판으로 보강된 철근콘크리트 부재의 전단 거동에 관한 실험적연구)

  • Lim, Dong-Hwan;Kwon, Yeong-Soon
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.3
    • /
    • pp.337-345
    • /
    • 2009
  • The purpose of this study is to investigate the shear strengthening effectiveness of the beams strengthened with near surface mounted (NSM) and external bonded (EB) CFRP strips. A total of nine concrete beams were made and tested. From this study, it was found that the shear stiffness and strength of the beams strengthened with NSM and EB strips were significantly improved compared to the control beam. Failure of the beam strengthened with NSM and EB strips was initiated by shear cracks, propagated diagonally to the adjacent epoxy grooves without crossing the epoxy and finally sudden diagonal crack connecting the point of application of load and flexural crack was occurred. For the beam strengthened combined with NSM and EB CFRP strips, the tensile strains in the NSM CFRP strips were observed in the range of 0.35% to 0.45% and strains with EB strips were measured about 0.3%.

Experimental Study on Bond Strength of AFRP Rebar in Normal Strength Concrete (AFRP 보강근의 부착강도에 대한 실험적 연구)

  • Choi, June-Ho;Park, Kyung-Chan;Lee, Young-Hak;Kim, Hee-Cheul;Lee, Jae-Sam
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.13 no.1
    • /
    • pp.9-16
    • /
    • 2009
  • For reinforced concrete members, bond strength is one of the important factors between the two materials: the concrete and the reinforcing element. The bond strength of Aramid Fiber Reinforced Polymer (AFRP) rebar was tested using the pull-out method. Presented were comparison results of the bond strength between AFRP rebar and deformed steel bars from the test. Embedded lengths and diameters of the rebar were taken into account as parameters. The bond stress-slip responses and failure modes of AFRP rebar were evaluated. It was found that the bond stress-slip responses of AFRP rebar were similar to those of deformed steel bars. As the diameter of rebar increased, the pull-out load increased. In addition, it was shown that the bond strength of an AFRP rebar was approximately 54% compared with that of a deformed steel bar.

Economic Analysis of a 5-Story RC OMRF Retrofitted with Modified Epoxy Mortar for Improving Seismic Performance (변성에폭시 모르터로 내진보강한 5층 철근콘크리트 보통모멘트골조의 경제성 분석)

  • Kang, Suk-Bong;Kwak, Jongman;Shin, Dongwoo;Son, Kiyoung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.3
    • /
    • pp.207-215
    • /
    • 2014
  • As a reinforcement material for RC members, the modified epoxy mortar has been reported one of the superior materials since the material can improve the load capacity and the seismic performance of the RC members. However, there were few experimental studies and analytical research for improving seismic performance with the material. This study is to propose an effective reinforcement plan for RC Ordinary Moment Resisting Frame (OMRF) with the evaluation of seismic performance and economic analysis. For the objective, first, the load-deflection curve of a simple beam specimen was compared with the analytical results. Second, a 5-story RC OMRF structure was designed only for gravity load and the alternatives for seismic reinforcement were suggested. Third, pushover analysis was executed for evaluation of design coefficients and seismic performance of the structures. Finally, an effective reinforcement plan was suggested based on the results of quantity take-off and economic analysis. The findings of this study can be utilized as the basic data when the modified epoxy mortar is applied to practice for improving the seismic performance of RC members.

Maximum Shear Reinforcement of RC Beams using High Strength Concrete (고강도 콘크리트를 사용한 RC보의 최대철근비)

  • Lee, Jung-Yoon;Hwang, Hyun-Bok
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.839-842
    • /
    • 2008
  • The ACI 318-05 code requires the maximum amount of shear reinforcement in reinforced concrete (RC) beams to prevent possible sudden shear failure due to over reinforcement. The design equations of the maximum amount of shear reinforcement provided by the current four design codes, ACI 318-05, CSA-04, EC2-02, and JCI-99, differ substantially from one another. The ACI 318-05, CSA-04, and EC2-02 codes provide an expression for the maximum amount of shear reinforcement ratio as a function of the concrete compressive strength, but Japanese code does not take into account the influence of the concrete compressive strength. For high strength concrete, the maximum amount of shear reinforcement calculated by the EC2-02 and CSA-04 is much greater than that calculated by the ACI 318-05. This paper presents the effects of shear reinforcement ratio and compressive strength of concrete on the maximum shear reinforcement in reinforced concrete beams. Ten RC beams having various shear reinforcement ratio were tested. Although the test beams were designed to have much more amount of shear reinforcement than that required in the ACI 318-05 code, all beams failed due to web concrete crushing after the stirrups reached the yield strain.

  • PDF

Flexural Behavior of Reinforced Ribs of Shotcrete for Various Configurations of Reinforcements (철근배근형태에 따른 철근보강 숏크리트의 휨파괴 거동특성 연구)

  • Park, Yeon-Jun;Lee, Jung-Ki;Noh, Bong-Kun;You, Kwang-Ho;Lee, Sang-Don
    • Tunnel and Underground Space
    • /
    • v.20 no.3
    • /
    • pp.169-182
    • /
    • 2010
  • H-beam and lattice-girder are the two most commonly used steel supports in domestic tunnels. Reinforced Ribs of Shotcrete(R.R.S.), which is frequently used in Scandinavian countries, is yet to be employed in Korea despite its advantages over H-beam or lattice girder in terms of economy and constructional efficiency. In this study, laboratory tests were conducted to determine the most suitable design of R.R.S in domestic tunnels. Various configuration of steel reinforcements including double layer of steel rebars were tested and compared. Reinforcement with H-beam and lattice girder were also analyzed. Results of this study can be of great use in selecting and designing of tunnel supports when the tunnel is excavated by NATM or Norwegian Method of Tunnelling(NMT).

Experimental Study on Shear Strength of AFRP-Reinforced Concrete Deep Beam (AFRP 보강근 콘크리트 깊은보의 전단강도에 대한 실험적 연구)

  • Cho, Jang-Se;Lee, Young-Hak;Kim, Hee-Cheul
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2010.04a
    • /
    • pp.445-448
    • /
    • 2010
  • 본 연구는 섬유 보강 폴리머(Fiber Reinforced Polymers, 이하 FRP) bar로 보강된 콘크리트 깊은 보의 전단강도를 평가하기 위하여 전단경간비, 보강비, 주근의 종류를 변수로 총 6개의 실험체에 대한 전단 실험을 수행하였다. 전단실험을 토대로 FRP bar로 보강된 콘크리트 깊은보의 균열 및 처짐에 대한 거동 조사를 수행하였으며, ACI 318-08의 스트럿-타이 모델을 이용한 전단강도와 아치작용을 고려한 기존 제안식에 의한 전단강도를 비교 평가하였다. 그 결과, FRP bar로 보강한 실험체와 철근으로 보강한 실험체는 상이한 전단거동을 보였으며, FRP bar로 보강한 경우의 전단강도가 철근으로 보강한 경우보다 증가하는 것으로 나타났다. 전단강도 산정에 있어서는 ACI 318-08의 스트럿-타이 모델을 이용한 방법이 기존 제안식에 의한 방법보다 상대적으로 정확했다.

  • PDF

Transport Coefficients and Effect of Corrosion Resistance for SFRC (강섬유 보강 콘크리트의 수송계수 및 부식저항효과)

  • Kim, Byoung-Il
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.6
    • /
    • pp.867-873
    • /
    • 2010
  • This study investigated the corrosion properties of reinforced concrete with the addition of steel fibers. The transport properties of steel fiber-reinforced concrete such as permeable void, absorption by capillary action, water permeability and chloride diffusion were first measured to evaluate the relationship with the corrosion of steel rebar. Test results showed a slight increase on the compressive strength with the addition of steel fibers as well as considerable improvement of penetration resistance to mass transport of harmful materials into concrete. The addition of steel fibers in reinforced concrete accelerated the initiation of steel corrosion contrary to the expected results based on the measured transport properties. The NaCl ponding surface showed the spalling failure due to the corrosion expansion of steel fibers and the cut-surface around the steel rebar showed the localized steel fiber's corrosion. The wet-dry cycling with high chloride ions as well as high temperature seems to induce the increase of salt crystallization on the pores continually and the increased pressure with the steel fiber's corrosion on the pores caused the spalling failure on the exposed surface. The microcracking on the surface therefore accelerated the movement of water, chloride ions and oxygen into the embedded steel rebar. The mechanism affecting corrosion of embedded steel reinforcement with steel fibers in this study are not yet fully understood and require further study comprising of accurate experimental design to isolate the effect of steel fiber's potential mechanism on the corrosion process.