• Title/Summary/Keyword: 철근콘크리트 성능보강

Search Result 468, Processing Time 0.024 seconds

Evaluation of Shear Behavior of Beams Strengthened in Shear with Carbon Fiber Reinforced Polymer with Mohr's Circle (모어써클을 활용한 탄소섬유 전단보강된 보의 전단거동 평가)

  • Kim, Yun-Gon
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.5
    • /
    • pp.527-534
    • /
    • 2016
  • Beams strengthened in shear with Carbon Fiber Reinforced Polymer (CFRP) which had different transverse reinforcement ratio were tested to evaluate shear contribution in the CFRP and to analyze shear behavior of each test with Mohr's circle. Strain in the CFRP should be evaluated to estimate the shear contribution in the CFRP which is brittle material. Test results were compared each other based on the Mohr's circle which can correlate shear strain with both principal tensile strain and crack angle. With low transverse steel ratio, shear strengthening with CFRP not only increases the shear strength effectively but also minimizes the loss in shear contribution of concrete by limiting the development of crack. With high transverse steel ratio, the effect on shear strengthening with CFRP is not as much as the beam with low ratio. Therefore, the shear contribution in the CFRP should be evaluated based on the strain compatibility which can consider the interaction between steel and CFRP when determining the shear capacity of a strengthened member.

Flexural Behavior of Hybrid Fiber Reinforcement Strengthened RC Beams (하이브리드 섬유보강재로 보강된 철근콘크리트 보의 휨거동)

  • Yi, Seong-Tae;Lee, Chin-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.5
    • /
    • pp.79-86
    • /
    • 2010
  • This study was performed to evaluate the flexural behavior of Hybrid fiber sheet (HFC) and Hybrid fiber bar (HFB) strengthened reinforced concrete (RC) beams. According to test results, Hybrid fiber reinforcement strengthened RC beams showed approximately 60 to 200% higher reinforcing effects than that of un-reinforced specimens. In addition, the reinforced beams showed the ideal failure pattern, which is failed presenting the ductile behavior after yielding of the reinforcing bar. More specifically, in the case of HFB reinforced RC beams, the difference with puttying method was not apparent since HFB beams reinforced using the injection of epoxy and bonding of putty showed the similar failure patterns.

An Experimental Study on the Behavior of RC Beams Externally Bonded with FRPs Under Sustained Loads (지속하중을 받은 FRP 외부부착 보강 철근콘크리트 보의 거동 특성에 관한 실험적 연구)

  • Shim, Jae-Joong;Oh, Kwang-Jin;Kim, Yeon-Tae;Park, Sun-Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.1
    • /
    • pp.125-132
    • /
    • 2010
  • In the recent construction industry, an external strengthening method using fiber reinforced polymers has been widely used. Since reinforced concrete structures strengthened with fiber reinforced polymers are always under sustained loads, influence of creep and shrinkage on the structures is inevitable. Due to the creep and shrinkage, behaviors of the structures, such as deflection, deformation, recovery capability, strength and so on are also under the influence of creep and shrinkage. Thus, in order to estimate efficacy, creep recovery and residual strength of FRP strengthened RC beams, long-term flexural experiments and static flexural experiments were carried out. As the result of the experiments, FRP strengthened RC beams were very effective in terms of deflection control. Furthermore, the strengthened beams had higher immediate deformation recovery than immediate deformation. Through the static flexural experiments, it was shown that the CFRP strengthened beam had high residual strength. It seems that the sustained loads did not affect bond and residual strength of the beams.

Shear Capacity of the RC T Beams Strengthened for Shear with NSM FRP Strips (FRP 판으로 표면매립 전단보강된 철근콘크리트 T형 보의 전단성능)

  • Seo, Soo-Yeon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.6
    • /
    • pp.256-262
    • /
    • 2022
  • The purpose of this study is to define the shear reinforcing effect of Near-Surface-Mounted (NSM) FRP strips in reinforced concrete (RC) member through a test. Three T shaped RC beams were made and two of them were strengthened with NSM FRP strips for increase shear strength. And those were tested to find the shear strengthening effect. In the test, two case of shear strengthening methods were considered such as 1) with NSM FRP strips having full embedded length and 2) with NSM FRP strips having some what short embedded length and additional externally bonded FRP sheet. As a result, the shear strengthening effect could be obtained when the NSM FRP strips are embedded to have full length up to the bottom of slab. However the shear strength was not increased in the case of having somewhat short embedded length of NSM FRP strips even additional EB sheet was enhanced.

Theoretical Assessment of Limit Strengthening Ratio of Bridge Deck Based on the Failure Characteristic (교량 바닥판의 파괴형태를 고려한 임계보강재비의 이론적 산정)

  • 심종성;오홍섭;유재명
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.1
    • /
    • pp.110-117
    • /
    • 2002
  • In a strengthened bridge deck which received increased service loads, failure patterns of bridge deck vary depending on deck thickness, compressive strength of concrete, yielding strength of reinforcement, reinforcement ratio and additional strengthening ratio. General failure pattern that is most commonly reported as punching shear failure after the main rebar yields, followed by yielding of distributing rebar. In this paper, by Proposing a limit to the amount of strengthening material, a brittle failure can be prevented and a ductile failure mode similar to that developed in unstrengthened deck is derived. In order to calculated the limit strengthening ratio, the yield line theory and previously proposed plastic punching shear model have been used

Material Performance Evaluation of PolyUrea for Structural Seismic Retrofitting (구조물 내진 보강용 폴리우레아의 재료 성능 평가)

  • Cho, Chul-Min;Choi, Ji-Hun;Rhee, Seung-Hoon;Kim, Tae-Kyun;Kim, Jang-Ho Jay
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.2
    • /
    • pp.131-139
    • /
    • 2017
  • Recently, earthquakes have frequently occurred near Korean peninsula. An experimental study is needed for developing a reinforcing method for seismic strengthening to apply to RC structures. Recently, PolyUrea (PU) as structural reinforcement materials has been receiving great interest from construction industry. The reinforcing effect of PU appeared to be excellent under blast and impact as well as earthquakes. In this study, Flexible Type PolyUrea (FTPU) developed in preceding studies was modified to develop Stiff Type PolyUrea (STPU) by varying the ratio of the components of prepolymer and hardener of FTPU. The material performance evaluation has been performed through hardening time, tensile strength and percent elongation test, pull-off test, and shore hardness test. The experimental results showed that STPU has higher tensile strength and lower elongation than FTPU. Therefore, STPU coating agent can be used for semi-permanent products. By using STPU with Fiber-Reinforced Polymer (FRP) on concrete columns, confinement effect can be enhanced to maximize seismic strength and ductility.

Numerical Study on Seismic Performance Evaluation of Circular Reinforced Concrete Piers Confined by Steel Plate (강판으로 보강된 원형철근콘크리트교각의 내진성능 평가에 관한 해석적 연구)

  • Lee, Myung-Jin;Park, Jong-Sup
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.1
    • /
    • pp.116-122
    • /
    • 2021
  • This study quantitatively evaluated the performance improvement of a circular reinforced concrete pier under dynamic load with strengthening using a steel plate. Various three-dimensional elements were applied using the finite element program ABAQUS. The analytical parameters included the ratios of the steel cover length to the pier's total height and the ratios of the steel cover thickness to the pier diameter for inelastic-nonlinear analysis. The lower part of the pier had fixed boundary conditions, and lateral repetitive loads were applied at the top of the pier. The pier was investigated to evaluate the dynamic performance based on the load-displacement curve, stress-strain curve, ductility, energy absorption capability, and energy ratio. The yield and ultimate loads of piers with steel covers increased by 3.76 times, and the energy absorption capability increased by 4 times due to the confinement effects caused by the steel plate. A plastic hinge part of the column with a steel plate improved the ductility, and the thicker the steel plate was, the greater the energy absorption capacity. This study shows that the reinforced pier should be improved in terms of the seismic performance.

Flexural Strength Capacity of RC Decks Strengthened with Carbon Fiber Reinforced Polymers (탄소섬유복합재로 보강된 철근콘크리트 바닥판의 휨보강 성능)

  • Park Jong Sup;Park Young Hwan;Jung Woo Tai;Kang Jae Yoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.165-168
    • /
    • 2005
  • Carbon Fiber Reinforced Polymer(CFRP) composites are widely applied to strengthen deteriorated concrete structures. This paper presents the experimental results of the performance of reinforced concrete(RC) decks strengthened with CFRP composites. Simple span decks with 2m span length were tested to investigate the effect of CFRP reinforcement types on the flexural behavior of strengthened RC beams. The test results were analyzed with the special emphasis on the failure mode and the maximum load.

  • PDF

Static and Fatigue Behavior Characteristics of Reinforced Concrete Beams Strengthened with CFRP Plate (CFRP Plate로 보강된 철근콘크리트 보의 정적 및 피로 거동 특성)

  • Kim, Kwang-Soo;Kim, Jin-Yul;Kim, Sung-Hu;Park, Sun-Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.4
    • /
    • pp.141-148
    • /
    • 2008
  • In the recent construction industry, Carbon Fiber Reinforced Polymers(CFRPs) have been highly considered as innovative strengthening materials for civil structures due to their superior material properties. This paper is to offer design data and strengthening efficiency of reinforced concrete beams strengthened with CFRP Plate. Static tests were carried out to evaluate failure modes and strengthening capacity. Displacements and strains of steel and CFRP plates were obtained and analyzed through a series of fatigue tests. Also, Those evaluated the energy dissipation. Results of the tests showed increase in strengthening ratios caused debonding failure at the end of beams. For the beams wrapped with CFRP sheets around the end of the plates, debonding failure mode that was induced from flexural cracks was indicated. Through the fatigue tests, it was observed that displacements, strains of steel and CFRP plates converged into certain values. It is also proved that the beams strengthened with CFRP plates are able to resist fatigue loading under serviceability.

Flexural Design and Experiments on Reinforced Concrete Filled PHC Pile (철근 콘크리트 충전 PHC말뚝의 휨 설계 및 성능 평가)

  • Kim, Jeong-Hoi;Jung, Hae-Kwang;Park, Young-Shik;Min, Chang-Shik
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.4
    • /
    • pp.353-360
    • /
    • 2017
  • The objective of this study is theoretical and empirical evaluation of the flexural performance of concrete filled pretensioned spun high strength concrete pile with ring type composite shear connectors (CFP pile). The specimens are comprised of standard CFP pile, PHC pile+composite shear connector+filed concrete (CFP-N-N), standard CFP pile with $1^{st}$ reinforcements (H13-8ea), and standard CFP pile with $1^{st}$ and $2^{nd}$ reinforcements(H19-8ea). Flexural performance evaluation results showed that the ductility is improved with increased steel ratio, which leads to the increased maximum load by 46.4% (with $1^{st}$ reinforcement) and 103.9% (with $1^{st}$ and $2^{nd}$ reinforcements) compared to standard CFP ( CFP-N-N). Comparing with the predicted ultimate limit state values of the CFP pile design method and the experimental results, the design method presented in this study is reasonable since safety factor of 1.23 and 1.40 times for each reinforcement step are secured.