• Title/Summary/Keyword: 철근의 영향

Search Result 939, Processing Time 0.022 seconds

Strength Model for Punching Shear of Flat Plate-Column Connections (플랫플레이트-기둥 접합부의 뚫림전단강도)

  • Choi Kyoung-Kyu;Park Hong-Gun
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.2 s.80
    • /
    • pp.163-174
    • /
    • 2004
  • A number of experiments were performed to investigate the punching shear strength of flat plate-column connections. According to the experiments, the punching shear strength varies significantly with design parameters such as the column size of the connection, reinforcement ratio, and boundary condition. However, current design methods do not properly address the effects of such design parameters. In the present study, a theoratical approach using Rankine's failure cirterion was attempted to define the failure mechanism of the punching shear According to the study, the failure mechanism can be classified into the compression-controlled and the tension-controlled, depending on the amount of bottom re-bars placed at the connection, and the punching shear strength is also significantly affected by the flexural damage of slab. Based on the finding, a new strength model of punching shear was developed, and verified by the comparisons with existing experiments and nonlinear finite element analyses. The comparisons show that the proposed strength model addressing the effects of various design parameters can predict accurately the punching shear strength, compared to the existing strength models.

Parametric Analysis for the Simultaneous Carbonation and Chloride Ion Penetration in Reinforced Concrete Sections (중성화와 염화물 침투가 동시에 발생하는 철근콘크리트 단면의 매개변수 분석)

  • Zhu, Xingji;Kim, Soye;Kwak, Dong-Woo;Bae, Kyung-Tae;Zi, Goangseup
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.5
    • /
    • pp.66-74
    • /
    • 2016
  • The objective of this study is the investigation of the influence of carbonation on the penetration of chloride ions in reinforced concrete sections for different mix proportions and environmental conditions. A comprehensive numerical model based on the change of the pore structure and the chemical equilibrium was used for this combined action of carbonation and chloride ingress. The empirical formulae of some parameters in this model are estimated according to numerous experimental data. And, a set of data analysis is carried out to simplify the estimation of model variables to reduce the computational cost. A coupled simulation of the transports of carbon dioxide, chloride ions, heat and moisture is carried out. Then, the parametric analysis is given and the numerical results show that the effect of carbonation of the free chloride ingress is significant and depends on the binder types and concrete mix proportion.

An Exploratory Study on the Supply Chain Partnership : Focusing on Rebar Manufacturing Firms as Second-tier Suppliers (공급망 파트너십에 관한 탐색적 연구 : 2차 협력업체로서의 철근가공업체를 중심으로)

  • Rhee, Moon-Ki Kyle;Choi, Si-Young;Kim, Tae-Ung
    • Journal of Digital Convergence
    • /
    • v.14 no.8
    • /
    • pp.211-221
    • /
    • 2016
  • The rapid trends toward outsourcing and collaboration have created complex multi-tier supply chains for construction and engineering industries. Working with suppliers and sub-suppliers requires continuous integration activities in order to maximize the performances of the entire supply chain. The purpose of this study is to identify the factors influencing the performances and long-term business relationship of second-tier suppliers in directed sourcing environment. This study proposes the asset specificity, trust, information-sharing and collaboration, as antecedents variables, and collected the survey responses from the second-tier suppliers in rebar manufacturing works. The statistical results indicate that the asset specificity, trust, information-sharing and collaboration have significant influences on the long-term business relationship of rebar manufacturing second-tier suppliers, but trust has no impact on the performances of second-tier suppliers at 5% significance level. Practical implications are also discussed.

Tension Stiffening Effect Considering Cover Thickness in Reinforced Concrete Tension Members (피복두께를 고려한 철근콘크리트 인장부재의 인장증강효과)

  • Lee, Gi-Yeol;Kim, Min-Joong;Kim, Woo;Lee, Hwa-Min
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.6
    • /
    • pp.791-797
    • /
    • 2011
  • This paper presents the test results of 12 direct tensile specimens to investigate the effect of cover thickness on the tension stiffening behavior in axially loaded reinforced concrete tensile members. Six concrete cover thickness ratios are selected as a main experimental parameter. The results showed that, as cover thickness became thinner, more extensive split cracking along the reinforcement occurred and transverse crack spacing became smaller, making the effective tensile stiffness of thin specimens at the stabilized cracking stage to be much smaller than that of thick specimens. This observation is not implemented in the current design provisions, in which the significant reduction of tension stiffening effect can be achieved by applying thinner cover thickness. Based on the present results, a modified tension stiffening factor is proposed to account for the effect of the cover thickness.

Prying Action of Spliced Reinforcements in Tension (인장 겹침이음에서 프라이 거동의 영향)

  • Chun, Sung-Chul;Choi, Dong-Uk;Ha, Sang-Su;Oh, Bo-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.1085-1088
    • /
    • 2008
  • Splice of reinforcement is inevitable in reinforced concrete structures and, generally, lap splices are used. Lap length for tension splice is determined from development length in tension. The development length is calculated from an experimental model which was based on data of tests on anchorage and splice. Longitudinal reinforcements in flexural members are deformed and, therefore, prying action happens in spliced reinforcements unlike anchored reinforcements. The prying action induces tensile stress in cover concrete and this tensile stress plays the same role to a circumferential tensile stress caused by bond. Because splitting failure is assumed to occur when the summation of tensile stresses caused by the prying action and the bond is equal to the tensile strength of the concrete, the prying action reduces the bond strength of spliced reinforcements. A theoretical model for the prying action is developed and effects of the prying action on the bond strength are assessed. The tensile stress by the prying action is proportional to tensile strength and modulus of elasticity of reinforcements. In addition, the tensile stress is inversely proportional to spacing of reinforcements. Consequently, longer splice length is required for spliced reinforcements with small spacing in flexible members.

  • PDF

Experimental Study for Concrete Base to Sleeve connection of Hybrid Substructure for Offshore Wind Turbine (하이브리드 해상풍력발전 지지구조물의 콘크리트 베이스-슬리브 연결부에 대한 실험 연구)

  • Lee, Jeong-Hwa;Byun, Nam-Joo;Kim, Seong-Hwan;Park, Jae-Hyun;Kang, Young-Jong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.1
    • /
    • pp.79-87
    • /
    • 2016
  • In this paper, concrete base to sleeve connections of hybrid substructures for offshore wind turbines were suggested and investigated experimentally. Punching shear strength tests with well-instrumented three connections under different reinforcement ratios and loading conditions were conducted to investigate the punching shear strength and the behavior of the concrete base to a sleeve connection. The test results showed that the punching strength and stiffness of the connections are affected mainly by the reinforcement ratios. The loading conditions with an axial load and proportional moment cannot affect the stiffness but affect the strength of the connections because of the axial load-moment interaction. The punching shear failure and critical section of the each test specimen are also discussed.

An Experimental Study on Shear Strength of RCS System Beam-Column Jointswith Various Transverse Beam Sections (직교보 단면크기 변화에 따른 RCS구조 보-기둥 접합부의 전단내력에 관한 실험적 연구)

  • An, Jae-Hyeok;Park, Cheon-Seok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.6
    • /
    • pp.197-204
    • /
    • 2006
  • Recently, in order to realization of construction and economical saving, various studies are progressing. Also, the study on RCS system which is consisted of reinforced concrete column and steel beam is progressing actively. Actually, however, resisting mechanism of panel zone is influenced by transverse beams when the stress transfers inner panel to outer panel but existing literature didn't reflect the effect of transverse beams. This paper is to analyze the test result of five inner beam-column joints specimen with a variable such as web, flange thickness of transverse beam and face bearing plate(FBP) for RCS systems were tested under cyclic loadings conforming to NEHRP recommendation to investigate the effect of transverse beams and the structural performance of beam-column joints. From the test result, it was shown that transverse beams are effective to enhance the shear strength and structural performance of beam-column joints.

Analysis of Carbonation for Harbor Concrete Structure (항만 콘크리트 구조물에 대한 탄산화 해석)

  • Han, Sang-Hun;Park, Woo-Sun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.20 no.6
    • /
    • pp.575-582
    • /
    • 2008
  • Carbonation is one of major factors influencing on the durability of concrete structure. This paper investigates the effect of carbonation on the soundness of harbor concrete structure and quantifies the influence of carbonation based on in-situation data tested at 369 points in 69 harbor facilities. The relationships between carbonation depth and cover depth, and between carbonation depth and compressive strength are studied and the failure probability of durability, that is the initiation probability of steel corrosion, is evaluated on the basis of reliability concept. The in-situation test results showed that the ratio of carbonation depth to cover depth was less than 0.2, and the carbonation depth increased with age. In most cases, the failure probability of durability by carbonation was less than 10%. Therefore, it can be concluded that the influence of carbonation on the durability of harbor concrete structure is smaller than other factors deteriorating the durability of harbor concrete structure.

Effect of Steam Curing on Compressive Strength of Slag Binder Concrete (증기양생이 고로슬래그 콘크리트의 압축강도에 미치는 영향)

  • Lim, Byung-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.8
    • /
    • pp.338-343
    • /
    • 2017
  • In this study, blast furnace slag powder was used in concrete to help reduce carbon dioxide emissions and to recycle industrial waste. Blast furnace slag powder is a byproduct of smelting pig iron and is obtained by rapidly cooling molten high-temperature blast furnace slag. The powder has been used as an admixture for cement and concrete because of its high reactivity. Using fine blast furnace slag powders in concrete can reduce hydration heat, suppress temperature increases, improve long-term strength, improve durability by increasing watertightness, and inhibit corrosion of reinforcing bars by limiting chloride ion penetration. However, it has not been used much due to its low compressive strength at an early age. Therefore, this study evaluates the effects of steam curing for increasing the initial strength development of concrete made using slag powder. The relationship between compressive strength, SEM observations, and XRD measurements was also investigated. The concrete made with 30% powder showed the best performance. The steam curing seems to affect the compressive strength by destroying the coating on the powder and by producing hydrates such as ettringite and Calcium-Silicate-Hydrate gel.

An Experimental Study on the Behavior of RC Beams Externally Bonded with FRPs Under Sustained Loads (지속하중을 받은 FRP 외부부착 보강 철근콘크리트 보의 거동 특성에 관한 실험적 연구)

  • Shim, Jae-Joong;Oh, Kwang-Jin;Kim, Yeon-Tae;Park, Sun-Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.1
    • /
    • pp.125-132
    • /
    • 2010
  • In the recent construction industry, an external strengthening method using fiber reinforced polymers has been widely used. Since reinforced concrete structures strengthened with fiber reinforced polymers are always under sustained loads, influence of creep and shrinkage on the structures is inevitable. Due to the creep and shrinkage, behaviors of the structures, such as deflection, deformation, recovery capability, strength and so on are also under the influence of creep and shrinkage. Thus, in order to estimate efficacy, creep recovery and residual strength of FRP strengthened RC beams, long-term flexural experiments and static flexural experiments were carried out. As the result of the experiments, FRP strengthened RC beams were very effective in terms of deflection control. Furthermore, the strengthened beams had higher immediate deformation recovery than immediate deformation. Through the static flexural experiments, it was shown that the CFRP strengthened beam had high residual strength. It seems that the sustained loads did not affect bond and residual strength of the beams.