• Title/Summary/Keyword: 철근의 영향

Search Result 939, Processing Time 0.021 seconds

A Study on the Base Properties of Nickel Type-Antifungal Agent for Reinforced Concrete Hume Pipe Lining (철근콘크리트흄관 라이닝용 니켈계 방균제의 기초적 특성 연구)

  • Jo, Young-Kug
    • Journal of the Korea Institute of Building Construction
    • /
    • v.10 no.4
    • /
    • pp.41-47
    • /
    • 2010
  • It has been continuously noted that many sewage treatment concrete structures have deteriorated due to sulfur-oxidizing bacteria. There have been many reports on approaches to protecting concrete from this bacteria corrosion. The purpose of this study is to evaluate the inhibition of growth of a sulfur-oxidizing bacterium by a antifungal agent such as $NiSO_4{\cdot}6H_2O$, and the characteristics of polymer cement mortar using nickel type antifungal agent. First, we developed antifungal agents using metal nickel and $NiSO_4{\cdot}6H_2O$ to inhibit the growth of thiobacillus novellus, which is the sulfur-oxidizing bacteria in concrete. Then, ordinary cement mortar and polymer cement mortar using nickel type antifungal agent with various polymer-cement ratios, and antifungal agent content were prepared, and were tested for the antifungal adding effect, compressive and flexural strengths, expansion and leaching of nickel ion. From the test results, it was confirmed that the adding of an antifungal agent has an inhibition effect on the growth of sulfur-oxidizing bacteria at antifungal agent contents of 20 mM or more. In addition, the strengths and expansion of polymer cement mortars are not significantly changed by the addition of an antifungal agent. Therefore, the nickel-type antifungal agent developed in this study can be used to improve the durability of reinforced concrete hume pipe in the construction industry.

A Study on the Shear Behavior of Recycled Aggregate Reinforced Concrete Beams without Stirrups (전단보강이 없는 순환골재 철근콘크리트 보의 전단거동에 관한 연구)

  • Lee, Jung-Hoon;Kim, Woo-Suk;Baek, Seung-Min;Kang, Thomas H.K.;Kwak, Yoon-Keun
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.4
    • /
    • pp.389-400
    • /
    • 2013
  • Little investigations have been carried out to study the shear behaviors of RC beams with recycled aggregates. So, this experiment investigates the shear performance and suggests the possible application of Recycled Concrete Aggregate (RCA) for building structures. In general, shear strength of reinforced concrete beam without stirrups is dependent on the compressive strength of concrete, the longitudinal steel ratio, and the shear span-to-depth ratio. In this study, total 28 recycled aggregate concrete beams without shear reinforcement were tested by two-point load and all beams were singly reinforced. The variables studied in this investigation are shear span-to-depth ratios (a/d=2, 3 and 4), RCA replacement ratios (0, 15, 30 and 50%) and longitudinal steel ratios (0.80, 1.27 and 1.84%). The designed concrete compressive strength with a 30 MPa is used. This research will play an important role toward the establishment of the structural design standard for RCA concrete.

Influence of Bubble Sheet Applying Methods on Temperature of Exposed Joint Rebar at Wall Surface of Load-Bearing Wall Structure Building During Winter (동절기 벽식구조 건축물 벽부분의 버블시트 포설방법 변화가 이음부 노출철근의 온도에 미치는 영향)

  • Han, Cheon-Goo;Lee, Jea-Hyeon;Kim, Min-Sang
    • Journal of the Korea Institute of Building Construction
    • /
    • v.17 no.2
    • /
    • pp.149-155
    • /
    • 2017
  • In this research, the surface covered curing method using the double-layered bubble sheet was evaluated. This double-layered bubble sheet has outstanding insulating performance with its low heat conductivity and high economic feasibility with its high durability. However, in the case of wall-typed building construction, the area of exposed rebar is curious on curing performance with the double-layered bubble sheet in spite of the double-layered bubble sheet showed favorable performance for slab. Therefore, in this research, regarding the actually constructed wall-typed apartment building, the most efficient curing method was suggested based on the evaluation of curing performance depending on temperature distribution depending on various location of covered or exposed rebar. As a result, the D method was determined as the most efficient curing method without any concern of early-age frost damage. However, by considering easiness of construction, the B method of covering the pieced double-layered bubble sheet on gap between rebars can be another option of desired result.

Shrinkage Properties of High Performance Concrete Depending on Specimen Size and Constraint of Reinforcing Bar (공시체 크기 변화 및 철근구속에 따른 고성능콘크리트의 수축 특성)

  • Han, Cheon-Goo;Kang, Su-Tae;Koh, Kyung-Taek;Hann, Chang-Pyung
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.1 s.91
    • /
    • pp.13-19
    • /
    • 2006
  • This paper reports the test results for shrinkage properties of low shrinkage high performance concrete developed by the authors depending on specimen size and constraint of reinforcing bar. As properties in fresh concrete low shrinkage high performance concrete(LSHPC) combined with expansive additives and shrinkage reducing admixture resulted in increase SP dosage due to loss of fluidity compared with that of control mixture concrete, while the dosage of AE agent was decreased. LSHPC exhibited higher compressive and tensile strength than control mixture concrete. For the effect of specimen size, an increase in specimen size led to a reduction of drying shrinkage. However, it was found that the autogenous shrinkage was not affected by the specimen size and measuring method. For constraint condition, an increase in the ratio of reinforcing bar caused the slight reduction in the strain of reinforcing bar, while it increased the autogenous shrinkage stress. It was seen that LSHPC was effective to reduce autogenous shrinkage by as much as 70% compared with control mixture high performance concrete.

Tensile Properties and Adhesion of Hybrid-Type Anti-Corrosion Polymer Cement Slurry (하이브리드형 방식 폴리머 시멘트 슬러리의 인장특성 및 접착성)

  • Jo, Young-Kug
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.5
    • /
    • pp.635-642
    • /
    • 2008
  • In recent years, epoxy-coated reinforcing bars have been widely used in order to prevent the corrosion of ordinary reinforcing bar. However, they have a bad balance between performance and cost. Especially, they have a brittleness properties, low bond strength to cement concrete and no good bend-ability in the field. The purpose of this study is to evaluate the tensile properties and adhesion of hybrid-type anti-corrosion polymer cement slurry (PCS). PCSs are prepared with four types polymer dispersions using fly ash and silica fume, and tested for proper coating thickness, tensile properties, adhesion to steel plate and bend-ability. From the test results, the viscosity of PCS is effected by polymer dispersion types, and is a little decreased by using fly ash. The coating thickness of PCS has a proper thickness at polymer-binder ratio of 100%. It is apparent that the coating thickness has various values according to viscosity of PCS, water-binder ratio and polymer-binder rato. PCS has a good various anticorrosion properties and physical properties such as tensile strength, adhesion and bend-ability. It is also recommended that proper coating thickness to reinforcing bar is in the ranges of 150 to $250{\mu}m$ for bond strength, adhesion and bend-ability. It is also expected that the coated reinforcing bar using PCS is widely used instead of epoxy coated reinforcing bar in the industrial field.

Flexural and Shear Behavior of Reinforced Dual Concrete Beam (철근 이중 콘크리트 보의 휨 및 전단 거동)

  • Park Tae-Hyo;Park Jae-Min;Kim Hee-Dae
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.3 s.87
    • /
    • pp.401-409
    • /
    • 2005
  • In this study, reinforced dual concrete beam (RDC beam) composed of steel fiber reinforced concrete (SFRC) in the tension part and normal strength concrete (NSC) in the compression and remaining part is proposed. It is the epochal structural system that improves the overall structural performances of beam by partially superseding the steel fiber reinforced concrete in the lower tension part of conventional reinforced concrete beam (RC beam). Flexural and shear tests are performed to prove the structural excellence of RDC beam in comparison with RC beam. An analytical method is proposed to understand the flexrual behavior and is compared to experimental results. And for shear behavior, experimental results are compared to empirical equations predicting the ultimate shear strength of full-depth fiber reinforced concrete beam to examine the behavior of RDC beam under shear. From this studies, it is proved that RDC beam has more superior structural performance than RC beam, and the analytical method for flexural behavior agrees well with experimental results, and the partial-depth fiber reinforcements have no noticeable effect on ultimate shear strength but it is considerably effective to control and prevent evolutions of crack.

Flexural Strength Analysis of RC T-Beams Strengthened Using Fiber Sheets (섬유시트로 보강된 T형 철근콘크리트보의 휨 강도 해석)

  • Park, Tae-Hyo;Lee, Gyu-Chul
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.2
    • /
    • pp.234-245
    • /
    • 2003
  • Most of the concrete bridge structures are exposed to damage due to the excessive traffic loading and the aging of the structure. The damage of concrete causes the further deterioration of the function in the concrete structure due to corrosion of the reinforced bars and decohesion between the concrete and the reinforced bar. The quick rehabilitation of the damaged concrete structures has become of great importance in the concrete structural system in order to avoid the further deterioration of the structures. Recently fiber sheets are used for strengthening the damaged concrete structures due to its many advantages such as its durability, non-corrosive nature, low weight, ease of application, cost saving, control of crack propagation, strength to thickness ratio, high tensile strength, serviceability and aesthetic. However, the lack of analytical procedures for assessing the nominal moment capacity by the fiber sheet reinforcement leads to difficulties in the effective process of decisions of the factors in the strengthening procedure. In this work, flexural strengthening effects by fiber sheets bonded on bottom face of the member are studied for the reinforced concrete T beam. In addition, auxiliary flexural strengthening effects by U-type fiber sheets bonded on bottom and side faces of the member to prevent delamination of the bottom fiber sheet are theoretically investigated. The analytical solutions are compared with experimental results of several references to verify the proposed approach. It is shown that the good agreements between the predicted results and experimental data are obtained.

Safety of Ductility Demand Based Seismic Design for Circular RC Bridge Columns (원형 철근콘크리트 교각에 대한 연성도 내진설계법의 안전성)

  • Lee, Jae-Hoon;Hwang, Jung-Kil;Choi, Jin-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.2
    • /
    • pp.193-202
    • /
    • 2008
  • Seismic design for bridge columns of the current Korea Highway Bridge Design Specifications which adopt full ductility design concept results in reinforcement congestion problems in construction site. It is due to large amount of confining steel is required even for small ductility demand which is a normal case in low and moderate seismicity regions like Korean peninsular. Therefore a new seismic design method based on limited ductility concept was proposed, which is called ductility demand based design method. It uses the new confining steel design equation considering ductility demand and aspect ratio of the column as well as material strength. The purpose of this study is to verify safety of the ductility demand based design method by the confining steel design equation. Eighty nine circular column test results are selected and investigated in terms of ductility factor and its safety. The safety factor for the circular column test results ranges between 1.11 and 3.98, and the average is 1.90. In this paper, the basic concept and detailed design procedure of the ductility demand based design method are also introduced as well as the investigation of the safety with respect to the major variables in confining steel design.

Bond Strength Properties of CFRP Rebar in Concrete According to the Concrete Strength (콘크리트 강도에 따른 CFRP 보강근의 부착강도 특성)

  • Kim, Ho-Jin;Kim, Ju-Sung;Kim, Young-Jin;Choi, Jung-Wook;Park, Sun-Gyu
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.4
    • /
    • pp.569-577
    • /
    • 2021
  • CFRP(Carbon Fiber Reinforced Plastic) can maintain the same strength even if the diameter is reduced by about one - third, and the weight is about one - twentieth of that of the deformed reinforcing bars that have been used in the construction industry. In particular, it is resistant to corrosion, which is the weakest part of reinf orcing bars, and there is no concern that it will deteriorate over time, It is light and durable, so transportation costs are low and it is convenient for high-rise buildings. This paper experimentally clarifies the adhesive properties of CFRP and clarifies its behavior. That is, bond strength test was conducted with the directness of CFRP and the strength of concrete as experimental variables, and the bond mechanism was clarified experimentally. Furthermore, based on the experimental results, we constructed the bond stress-slip-strain relationship of CFRP compared to the existing deformed reinforcing bars.

Structural Behavior of RC Beams with Headed Bars using Finite Element Analysis (유한요소해석 기반 확대머리 이형철근 상세 따른 RC보의 구조성능 효과 분석)

  • Kim, Kun-Soo;Park, Ki-Tae;Park, Chang-Jin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.5
    • /
    • pp.40-47
    • /
    • 2021
  • In this study, the structural behavior by the details of the lap region with the headed bar was estimated through finite element analysis. To solve the finite element analysis of the anchorage region with complex contact conditions and nonlinear behavior, a quasi-static analysis technique by explicit dynamic analysis was performed. The accuracy of the finite element model was verified by comparing the experimental results with the finite element analysis results. It was confirmed that the quasi-static analysis technique well reflected the behavior of enlarged headed bar connection. As a result of performing numerical analysis using 21 finite element models with various development lengths and transverse reinforcement indexes, it was confirmed that the increase of development length and transverse reinforcement index improved the maximum strength and ductility. However, to satisfy the structural performance, it should be confirmed that both design variables(development length and transverse reinforcement index) must be enough at the design criteria. In the recently revised design standard(KDS 14 20 52 :2021), a design formula of headed bar that considers both the development length and the transverse reinforcing bar index is presented. Also the results of this study confirmed that not only the development length but also transverse reinforcing bars have a very important effect.