• Title/Summary/Keyword: 철근의 노출길이

Search Result 7, Processing Time 0.024 seconds

Analysis of Correlativity with the Number of Blasting Holes Due to Exposed Length of Steel Bars and Vertical Load on Scaled Reinforced Concrete Columns (축소모형 철근콘크리트 기둥에서 철근의 노출길이와 수직하중에 따른 발파공수와의 상관성 분석)

  • Park, Hoon;Yoo, Ji-Wan;Lee, Hee-Gwang;Song, Jung-Un;Kim, Sung-Kon
    • Explosives and Blasting
    • /
    • v.25 no.2
    • /
    • pp.1-10
    • /
    • 2007
  • In this paper, the 1/5 scale models of the reinforced concrete colunms were designed and fabricated. The influence of the number of blasting holes on the exposed length of steel bars and vertical load was investigated. The relation between the length of steel bar and the number of blasting holes was examined by performing the blast tests considering the vertical load on the scaled reinforced concrete columns. Weight of scaled column models by blasting and that of exposed was compared with the number of blasting holes. Finally, based on the exposed length of steel bars and vertical load, the number of blasting holes were calculated. Results shows that the number of blasting holes calculated in this study are suitable for scaled structure models test by blasting demolition.

Investigation of Material Characteristics of Reinforced Concrete Beam After Exposure to Fire Test (화재 실험에 따른 철근 콘크리트 보의 재료특성 연구)

  • Ju, Min-Kwan;Park, Cheol-Woo;Oh, Ji-Hyun;Seo, Sang-Gil;Shim, Jae-Won
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.3
    • /
    • pp.33-41
    • /
    • 2016
  • Concrete is inherently a good fire-resistance material among all other constrcution materials and protects the reinforcing steel inside. This study investigates the material characteristics of concrete and steel bar inside the full scale reinforced concrete(RC) beam exposed to fire test. The fire test specimen was 4 m long and the test was conducted under no loading condition following KS F 2257. Fire source is simulated by ISO 834 and number of thermocouples were installed to measure temperature variation of surfaces and inside of the beam. The measured compressive strength of cored specimen, which was exposed to fire test, was 11 MPa, about 66% lower than the strength before exposure. The yielding strength of steel bar also decreased about 75 MPa, about 17% lower. The measured temperature of protected steel bar was around $649^{\circ}C$, the critical limit, after 4 hour exposure.

Development and Splice Lengths of FRP Bars with Splitting Failures (쪼갬파괴에 의한 FRP 보강근의 정착길이와 이음길이)

  • Chun, Sung-Chul;Choi, Dong-Uk
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.4
    • /
    • pp.519-525
    • /
    • 2010
  • Data from beam-based bond tests for FRP bars in the literature were collected and regression analyses were conducted for the data of splitting failure. Average bond strengths obtained from splice tests were found to be lower and more affected by C/$d_b$ values than average bond strengths from anchorage tests, indicating needs of new design equation for the splice length of FRP bars based on the data of splice tests only. In addition, the variation of bond strengths was greater than that of tensile strengths of FRP bars and, therefore, a new safety factor should be involved for the design equation. Five percent fractile coefficients were used to develop the design equations based on the assumption that load and resistance factors for FRP reinforced concrete structures are same to the factors for steel reinforced concrete structures. The proposed design equations give economical and reliable lengths for development and splice of FRP bars. The proposed equation for splice provides shorter lengths than the ACI 440 equation in case of C/$d_b$ of 3.0 or greater. Because FRP bars are expected to be used in slabs and walls exposed to weather with thick cover and large spacing between bars, the proposed equation gives optimal splice lengths.

An Experimental Study on Relationship Between Half-Cell Potential and Corrosion Current Density of Chloride-Induced Corroded Steel in Concrete (염해에 따라 콘크리트 속에서 부식된 철근의 반전지전위와 부식전류밀도의 상관관계에 관한 실험적 연구)

  • Jo, Sang-Hyeon;Kim, Dong-Won;Kee, Seong-Hoon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.6
    • /
    • pp.1-13
    • /
    • 2022
  • This study aims to investigate the feasibility of the half-cell potential (HCP) measurements on the concrete surface for evaluation of corrosion rate (or corrosion levels) of reinforcing steel in concrete. A series of experimental study is performed to measure HCP (or corrosion potential, Ecorr) and corrosion current density (icorr) of reinforcing steel in concrete cube specimens, with a side length of 200 mm. Various corrosion levels in a range of 0% to 20% of the test specimens are accelerated by impressing current to the reinforcing steel in concrete immersed in 3.0 % NaCl solution. HCP is measured in accordance with ASTM C876-15, and corrosion current density is determined by using the Stern-Geary equation and measured polarization resistance measured by electrochemical impedance spectroscopy (EIS). As a result, a numerical formula that relates HCP and icorr in the test specimen is established by a regression analysis of the measured data in this study. It is observed that HCP is linearly correlated with log(icorr) with a R2 greater than 0.87, which is less affected by the experimental variables such as concrete mixture proportion, diameter of reinforcing steel and the amount of applied current in this study. These results exhibit that HCP measurements could be effective for evaluation of corrosion rate (or corrosion levels) of reinforcing steel in concrete in the case of exposed to a certain consistent environment.

Properties of Temperature History of Lightweight Mortar for Fire Protection Covering Material in High Strength Concrete (고강도 콘크리트 내화피복용 경량 모르터의 온도이력 성상)

  • Lim, Seo-Hyung
    • Fire Science and Engineering
    • /
    • v.26 no.6
    • /
    • pp.45-50
    • /
    • 2012
  • The spalling causes the sever reduction of the cross sectional area with the exposure of the reinforcing steel, which originates a problem in the structural behaviour. By coating surface of high strength concrete with fireproof mortar, the high strength concrete is protected from the spalling in fire and the method to constrain the temperature increase of steel bar within the concrete. The purpose of this study is to investigate the temperature history properties of lightweight mortar using perlite and polypropylene fiber for fire protection covering material. For this purpose, selected test variables were the contents and length of polypropylene fiber. As a result of this study, it has been found that addition of polypropylene fiber to mortar modifies its pore structure and this causes the internal temperature to rise. And it has been found that a new lightweight mortar can be used in the fire protection covering material.

Evaluation of Half Cell Potential Measurement in Cracked Concrete Exposed to Salt Spraying Test (염해에 노출된 균열부 콘크리트의 반전위 평가)

  • Kim, Ki-Bum;Park, Ki-Tae;Kwon, Seung-Jun
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.6
    • /
    • pp.621-630
    • /
    • 2013
  • Several techniques for steel corrosion detection are proposed and HCP (half cell potential) technique is widely adopted for field investigation. If concrete has cracks on surface, steel corrosion is rapidly accelerated due to additional intrusion of chloride and carbon dioxide ions. This study is for an evaluation of HCP in cracked concrete exposed chloride attack. For this work, RC (reinforced concrete) beams are prepared considering 3 w/c ratios (0.35, 0.55, and 0.70) and several cover depths (10~60 mm) and various crack widths of 0.0~1.0 mm are induced. For 35 days, SST (salt spraying test) is performed for corrosion acceleration, and HCP and corrosion length of rebar are evaluated. With increasing crack width, w/c ratios, and decreasing cover depth, HCP measurements increase. HCP evaluation technique is proposed considering the effects of w/c ratios, crack width, and cover depth. Furthermore anti-corrosive cover depths are obtained through Life365 program and the results are compared with those from this study. The results shows relatively big difference in cracked concrete, however provide similar anti-corrosive conditions in sound concrete.

Flexural Strength Evaluation of PSC Beam with Loss of PS Tendon Area (PS강재의 단면적 감소에 따른 PSC보의 휨강도 평가)

  • Park, Soon-Hyung;Kim, Yong-Tae;Youn, Seok-Goo;Kim, Eun-Kyum
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.309-312
    • /
    • 2008
  • This paper describes ultimate load tests which were performed to show the effects of prestress loss and tendon corrosion on the flexural strength of post-tensioned concrete beams and the occurrence of wire fracture. Five test specimens were fabricated in laboratory with the variations of the prestress of tendons and the loss of tendon area. For two specimens, small area of tendon at the center of the beam was exposed by using diameter 25mm drill and the exposed tendon was corroded using accelerated corrosion equipment. During the tests, deflections, crack width, and strain changes were measured and acoustic events were monitored with two acoustic sensors. Tests results show that the ultimate flexural strength of test specimens with corroded tendons is smaller than the predicted flexural strength which is calculated considering the loss of tendon area. It is considered that estimation of flexural strength of PSC beams with corroded tendons is very complicated just based on the loss of tendon area obtained by one-side visual inspection.

  • PDF