• Title/Summary/Keyword: 철근모듈화

Search Result 15, Processing Time 0.023 seconds

The Mock-Up Test for Applying Rebar Modularization to the Wall of Nuclear Power Plant (원전 벽체구조물의 철근모듈화 적용을 위한 Mock-Up 실험연구)

  • Lee, Byung-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.05a
    • /
    • pp.7-8
    • /
    • 2016
  • We are developing the technology for applying the Rebar Modularization Method to the Nuclear Power Plant Structures. To achieve this, we had developed the elementary technology for applying this method to Nuclear Power Plant Structures efficiently and performed the Mock-Up Test by using the developed elementary technology. By analysing this test result, we deduced the problems and found solutions to solve them.

  • PDF

Mock-up Test for Nuclear Power Plant Rebar Modulation Applying Febrication (선조립공법을 활용한 원전구조물 철근모듈화 Mock-up 실험연구)

  • Lim, Sang-Jun;Lee, Byung-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.05a
    • /
    • pp.13-14
    • /
    • 2015
  • To minimize construction of nuclear facility, it is required to reduce reinforcing bar amount and solve reinforcing bar concentration and for this, it is necessary to develop appication design technology and modular of high strength reinforcing bar. Hence, KHNP reduces excessive reinforcing bar amount which can cause possibility of poor construction of concrete through design standard development and modular of nuclear facility structure using high strength reinforcing bar to raise economics and has its purpose to maintain high-level safety and durability as they are. After reviewing the rebar drawing of the NPP structures and performing the mock-up test, the rebar modulation method in the various area of the NPP Structure has been established.

  • PDF

The Rebar Modulation Method in the Area of the Nuclear Power Plant Structures (원전구조물 부위별 철근모듈화 방안 연구)

  • Lee, Byung-Soo;Bang, Chang-Joon;Kim, Hun Jin;Lim, Sang-Joon;Park, Jong-Hyuk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.11a
    • /
    • pp.15-16
    • /
    • 2013
  • Because of the complicated shape and the overcrowded arrangement of rebar, there are some problems in applying the rebar modulation for the Nuclear Power Plant Structures. In order to resolve these problems, we have been studying the rebar modulation method applying techniques of the high strength rebar for NPP Structure. After reviewing the rebar drawing of the NPP structures and performing the mock-up test, the rebar modulation method in the various area of the NPP Structure has been established. I will introduce this method and the future plan of the research.

  • PDF

Study of application method for the Rebar Modulation of High-Strength Reinforcing Bars to the Nuclear Power Plant Structures (원전구조물 고강도철근 모듈화를 위한 적용방법 연구)

  • Lim, Sang-Joon;Lee, Byung-Soo;Bang, Chang-Joon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.11a
    • /
    • pp.17-18
    • /
    • 2013
  • To minimize construction of nuclear facility, it is required to reduce reinforcing bar amount and solve reinforcing bar concentration and for this, it is necessary to develop appication design technology and modular of high strength reinforcing bar. Hence, KHNP reduces excessive reinforcing bar amount which can cause possibility of poor construction of concrete through design standard development and modular of nuclear facility structure using high strength reinforcing bar to raise economics and has its purpose to maintain high-level safety and durability as they are. This study is to introduce application method for the Rebar Modulation of High-Strength Reinforcing Bars to the Nuclear Power Plant Structures.

  • PDF

Performance Evaluation of Welding Method for Modular of High-Strength Reinforcing Bars to the Nuclear Power Plant Structures (원전구조물 고강도철근 모듈화를 위한 용접방법 성능평가)

  • Lim, Sang-Joon;Lee, Han-Woo;Kim, Hyeong-Seob;Bang, Chang-Joon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.05a
    • /
    • pp.278-280
    • /
    • 2013
  • To minimize construction quantity of nuclear facility, it is required to reduce reinforcing bar amount and solve reinforcing bar concentration and for this, it is necessary to develop application design technology and modular of high strength reinforcing bar. Hence, KHNP reduces excessive reinforcing bar amount which can cause possibility of poor construction of concrete through design standard development and modular of nuclear facility structure using high strength reinforcing bar to raise economics and has its purpose to maintain high-level safety and durability as they are.

  • PDF

Analytical System Development for Reinforced Tall Buildings with Construction Sequence (시공단계에 따른 철근콘크리트 고층건물의 해석시스템 개발)

  • Lee, Tae-Gyu
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.9
    • /
    • pp.410-417
    • /
    • 2013
  • Long-term behavior analysis considering construction sequence should be performed in the design and the actual construction of reinforced tall buildings. Most of the analytical studies on this subject, however, has not been applied directly to the structural design and the construction caused by the simple approach. As the axial force redistribution of shores and columns is time-dependent, the actual construction sequence with the placement of concrete, form removal, reshoring, shore removal, and the additional load application is very important. Object-oriented analysis program considering construction sequence, especially time-dependent deformation in early days, is developed. This system is composed of input module, database module, database store module, analysis module, and result generation module. Linkage interface between the central database and each of the related module is implemented by the visual c# concept. Graphic user interface and the relational database table are supported for user's convenience.

Design and Implementation of the Quantity Surveying and Shop Drawing System for Structures (BIM 기반 골조 물량산출 및 도면생성 모듈의 설계와 구현)

  • Lee, Byung-Kwon;Kim, Chee-Kyeong
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.132-135
    • /
    • 2011
  • 최근 설계 단계에서 설계품질 향상과 시공 단계에서 비용 절감을 효과를 기대하며 3차원 BIM 관련 기술에 대한 관심이 높아가고 있으며, 또한 부분적으로 기술 도입 효과가 나타나고 있다. BIM 기술은 크게 BIM 도구를 활용하여 설계정보를 디지털화하는 모델링 단계 기술과 BIM 모델로부터 설계 정보를 추출하여 업무 진행에 필요한 형태로 가공, 변환하는 정보 활용 기술로 구분하여 생각할 수 있다. BIM 기술에 대한 근자의 높은 관심에도 불구하고 실제 현장에 적용되어 가시적인 성과를 내는 데에 한계를 보이고 있는 이유 중 하나로 후자의 정보 추출 및 활용 기술의 범위와 완성도의 한계를 들 수 있다. 즉 많은 노력을 통하여 BIM 모델을 구축하더라도 이를 기반으로 물량산출, 도면 생성 등 가장 기본적인 업무조차도 현장에서 바로 사용할 수 있는 수준의 기능이 제공되고 있지 않다. 본 연구에서는 건축 골조를 대상으로 3차원 골조 모델을 이용하여 골조 물량, 특히 정확한 물량산출이 상대적으로 어려운 철근에 대하여 철근의 이음, 정착 등이 고려된 실행물량을 산출할 수 있는 시스템을 설계하고 구현하였다. 또한 3차원 모델을 기반으로 철근 배근시공도와 가공일람표를 관련 기준에 따라 정확히 자동 작성함으로써 골조공사가 효율적으로 수행되고, 특히 정확한 이음 및 정착과 가공 계획을 통하여 철근 손실율을 최소화함이 기대된다. 본 논문에서는 이러한 BIM 기반 골조 물량산출 및 도면생성 시스템과 관련하여 주요 시스템 설계 내용과 구현 결과에 대하여 기술한다.

  • PDF

An Experimental Study on Flexural Strength of Lip-Type Modular Steel Concrete Beam (Lip-Type 모듈형 SC보의 휨내력에 관한 실험적 연구)

  • Ahn, Hyung Joon;Shin, Il Kyoun;Ryu, Soo Hyun
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.2
    • /
    • pp.261-270
    • /
    • 2006
  • In this paper, the basic data regarding the application of the MSC (Modular Steel Concrete) beam are presented by comparing the experimental value with the theoretical value, focusing on the bending behavior of the Lip-type MSC beam, which is composed of steel and concrete. Considerable manpower is needed to fabricate the traditional MSC beam, particularly for the tasks of cutting, welding, etc. Because much time is needed to fabricate the traditional SC beam, the prefabrication concept is introduced, easily produce the required size of the SC beam by prefabricating the side module and the lower module, which is made up of a steel sheet. The result indicates that the method of uniting the modules, an d the composition method with concrete, should be improved. The proposed MSC beam can be used as a new structural member by increasing its coherent reinforcement with modules and the composition ratio of steel and concrete through a future study.

Experimental Study on Flexural Capacity of Precast Steel Mesh Reinforced Mortar Panel (프리캐스트 스틸메쉬 보강 모르타르 패널의 휨 성능에 대한 실험적 연구)

  • Yi, Na Hyun;Kim, Jang Ho Jay;Lee, Sang Won;Kim, Tae Gyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.3
    • /
    • pp.10-19
    • /
    • 2013
  • Recently, researches related to precast modular construction have been actively conducted for nuclear power plant, LNG gas tank, and small-medium PCCV as well as bridges and buildings. In this study, the precast panel cast with steel mesh reinforced mortar (SRM) which is similar reinforced ferrocement was developed for efficient precast construction, construction time reduction, and easy transportation. Mortar mixture with high strength and flowability was obtained from various case studies using silica fume and GGBS. Also, $1,200{\times}600{\times}150mm$ SRM and reinforced concrete (RC) panels were manufactured with reinforcing ratio of 2% and 4%. To verify structural performance of the SRM specimen, the basic material tests, free shrinkage test, and 3-point flexural test with a line loading were carried out. From the test results, it was determined that SRM specimens showed outstanding flexural capacity and ductility. However, the 4% reinforced SRM specimens must consider shear reinforcing to be used as a precast modular member.

Shear Strength of Prestressed PC-CIP Composite Beams with Vertical Shear Reinforcement (전단 철근 보강된 프리스트레스 PC와 CIP 합성보의 전단강도)

  • Suh, Jung-Il;Park, Hong-Gun;Hong, Geon-Ho;Kang, Su-Min;Kim, Chul-Goo
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.4
    • /
    • pp.399-409
    • /
    • 2015
  • Recently, the use of composite construction method using precast (PC) and cast-in-place (CIP) concrete is increased in modular construction. For PC members, pre-tensioning is used to improve efficiency of the structural performance. However, current design codes do not clearly define shear strength of prestressed PC-CIP composite members. In this study, 22 specimens were tested to evaluate shear strength of prestressed composite members with vertical shear reinforcement. The test variables were the area ratio of high-strength (60 MPa) to low-strength concrete (24 MPa), prestressing force of strands, shear span-to-depth ratio(a/d), and vertical shear reinforcement ratio. The test results showed the prestressing force did not completely restrain diagonal cracking of non-prestressed concrete in the web. Thus, the effect of prestress force was not insignificant in the effect for monolithic beams. The vertical shear strength and horizontal shear strength of the composite beams were compared with the strength predictions of KCI design method.