• Title/Summary/Keyword: 철골 모멘트 골조

Search Result 116, Processing Time 0.02 seconds

Evaluation of Nonlinear Seismic Performance Using Equivalent Responses of Multistory Building Structures (대표응답을 이용한 건축구조물의 비선형 지진응답 분석 및 내진성능평가)

  • 이동근;최원호
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.5 no.6
    • /
    • pp.65-76
    • /
    • 2001
  • Determination of ductility demand and prediction of nonlinear seismic responses of a structure under the earthquake ground motions have become a very important subject for evaluation of seismic performance in the performance based seismic design. In this study, the system ductility demand and nonlinear seismic responses of the steel moment framed structures by the nonlinear time history analysis are estimated and compared with those obtained from the capacity spectrum method suggested in ATC-40 and proposed method that is an improvement on the capacity spectrum method using the equivalent responses derived directly from a multi degree of freedom system. the adequacy and validity of the proposed method is verified by comparing the results evaluated by the method proposed in this study and the results obtained from method suggested in ATC-40 to the nonlinear seismic responses of the example structures from the nonlinear time history analysis.

  • PDF

Seismic Performance Evaluation of Non-Seismic Reinforced Concrete Buildings Strengthened by Perimeter Steel Moment Frame (철골 모멘트골조로 보강된 철근콘크리트 건물의 내진성능 평가)

  • Kim, Seonwoong
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.24 no.5
    • /
    • pp.233-241
    • /
    • 2020
  • This paper is to investigate the retrofitting effect for a non-seismic reinforced concrete frame strengthened by perimeter steel moment frames with indirect integrity, which ameliorates the problems of the direct integrity method. To achieve this, first, full-scale tests were conducted to address the structural behavior of a two-story non-seismic reinforced concrete frame and a strengthened frame. The non-seismic frame showed a maximum strength of 185 kN because the flexural-shear failure at the bottom end of columns on the first floor was governed, and shear cracks were concentrated at the beam-column joints on the second floor. The strengthened frame possessed a maximum strength of 338 kN, which is more than 1.8 times that of the non-seismic specimen. A considerable decrease in the quantity of cracks for the strengthened frame was observed compared with the non-seismic frame, while there was the obvious appearance of the failure pattern due to the shear crack. The lateral-resisting capacity for the non-seismic bare frame and the strengthened frame may be determined per the specified shear strength of the reinforced columns in accordance with the distance to a critical section. The effective depth of the column may be referred to as the longitudinal length from the border between the column and the foundation. The lateral-resisting capacity for the non-seismic bare frame and the strengthened frame may be reasonably determined per the specified shear strength of the reinforced columns in accordance with the distance to a critical section. The effective depth of the column may be referred to as the longitudinal length from the border between the column and the foundation. The proposed method had an error of about 2.2% for the non-seismic details and about 4.4% for the strengthened frame based on the closed results versus the experimental results.

Evaluation of Progressive Collapse Resistance of Steel Moment Frame with WUF-B Connection and Composite Slab using Equivalent Energy-based Static Analysis (WUF-B 접합부 및 합성슬래브로 설계된 철골모멘트골조의 에너지 기반 근사해석을 이용한 연쇄붕괴 저항성능 평가)

  • Noh, Sam-Young;Park, Ki-Hwan;Hong, Seong-Cheol;Lee, Sang-Yun
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.2
    • /
    • pp.19-28
    • /
    • 2018
  • The progressive collapse resistance performance of a steel structure constructed using the moment frame with the WUF-B connection and the composite slabs was evaluated. GSA 2003 was adapted for the evaluation. Additionally the structural robustness and the sensitivity against the progressive collapse were analyzed. In the numerical analysis, a reduced model comprised of the beam and spring elements for WUF-B connection was adapted. The composite slab was modeled using the composite-shell element. Instead of the time-consuming dynamic analysis for the effect of the sudden column removal, the equivalent energy-based static analysis was effectively applied. The analysis results showed that the structure was the most vulnerable to in the case of the internal column removal, however it satisfied the chord rotation criterion of GSA 2003 due to the contribution of the composite slab which improved the stiffness of structure. In the robustness evaluation, the structural performance showed more than 2.5 times of the requirement according to GSA 2003, and the structural sensitivity analysis indicated the decrease of 33% of the initial structural performance.

Lateral Load Distribution Factor for Pushover Analysis including Higher Mode Effects (고차모드 영향을 반영한 푸쉬오버 해석 횡력 분배계수)

  • Kim, Geon-Woo;Song, Jin-Gyu;Lee, Cheol-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.3
    • /
    • pp.203-210
    • /
    • 2006
  • A procedure for determining the lateral load pattern for pushover analysis which includes higher mode effects is presented in this study. It is well-known that the details of future earthquakes at particular site is almost impossible to predict accurately and that the code-design spectra try to represent at least the average nature of probable future earthquakes. Thus the code-design spectrum is directly used as the input earthquakes in this paper when incorporating higher mode effects in the pushover analysis so that the efforts for selecting input motions and constructing response spectrum needed in some existing method could be avoided. A case study based on the time history analysis of a irregular steel moment frame showed that the procedure proposed in this study generally outperforms various pushover analysis procedures of ATC-40 and FEMA 273. However, the proposed procedure tended to be conservative as compared with the time history analysis method.

A Numerical Study on the Strain Based Monitoring Method for Lateral Structural Response of Buildings using FBG Sensors (FBG를 이용한 변형률 기반 건물의 횡방향 구조반응 모니터링 기법에 관한 해석적 연구)

  • Choi, Se Woon;Park, Keunhyoung;Kim, Yousok;Park, Hyo Seon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.4
    • /
    • pp.263-269
    • /
    • 2013
  • In this study, the strain based monitoring method to evaluate the lateral structural response of buildings is presented and an applicability of the proposed method is confirmed through the numerical study. It is assumed that the fiber Bragg grating(FBG) strain sensor is employed to measure the strain response of members due to the excellent properties such as multiplexing, and higher sampling frequency. These properties of FBG sensors is proper for buildings the a lot of sensors are required to monitor the reponses of those. FBG sensors measure the strain response of vertical members and are employed to calculate the curvatures of members using the measured strain responses. Then the lateral displacement, and lateral acceleration is evaluated based on the curvatures of vertical members. Additionally, these dynamic responses of buildings are used to evaluate the dynamic properties of buildings such as the natural frequencies and mode shapes using the frequency domain decomposition(FDD) method. Through the application of nine-story steel moment frame example structure, it is confirmed that the proposed method is appropriate to evaluate the lateral structural responses and dynamic properties of buildings.

Response scaling factors for nonlinear response analysis of MDOF system (다층건물의 비선형 반응해석을 위한 반응수정계수)

  • 한상환;이리형
    • Computational Structural Engineering
    • /
    • v.8 no.3
    • /
    • pp.103-111
    • /
    • 1995
  • Evaluating nonlinear response of a MDOF system under dynamic stochastic loads such as seismic excitation usually requires excessive computational efforts. To alleviate this computational difficulty, an approximation is developed in which the MDOF inelastic system is replaced by a simple nonlinear equivalent system(ENS).Me ENS retains the most important properties of the original system such as dynamic characteristics of the first two modes and the global yielding behavior of the MDOF system. The system response is described by the maximum global(building) and local(interstory) drifts. The equivalency is achieved by two response scaling factors, a global response scaling factor R/sub G/, and a local response scaling factor R/sub L/, applied to the responses of the ENS to match those of the original MDOF system. These response scaling factors are obtained as functions of ductility and mass participation factors of the first two modes of structures by extensive regression analyses based on results of responses of the MDOF system and the ENS to actual ground accelerations recorded in past earthquakes. To develop the ENS with two response scaling factors, Special Moment Resisting Steel Frames are considered. Then, these response scaling factors are applied to the response of ENS to obtain the nonlinear response of MDOF system.

  • PDF