• Title/Summary/Keyword: 철골가새

Search Result 52, Processing Time 0.016 seconds

A Study on Quantitative Lateral Drift Control of Tall Steel Braced Frames subject to Horizontal Loads (수평하중을 받는 고층철골가새골조의 정량적인 횡변위제어에 관한 연구)

  • Kim, Ho-Soo;Lee, Han-Joo
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.4 s.47
    • /
    • pp.397-406
    • /
    • 2000
  • This study presents an effective optimal technique to control quantitatively lateral drift for tall steel braced frames subject to horizontal loads. In this paper, the displacement sensitivity depending on behavior characteristics of steel braced frames is established, and also the approximation concept that has the generality of the mathematical programming and can efficiently solve large scale problems is introduced. Especially, the commercially available standard steel sections are used for the discrete selection of member sizes. Three types of 12-story braced frames and a 30-story braced framework are presented to illustrate the features of the quantitative lateral drift control technique proposed in this study.

  • PDF

Hysteretic Behavior of Compressive Braces upon Repeated Cyclic Loading Based on the Review of Existing Data (기존 실험 자료를 통한 압축 철골가새의 반복 이력거동에 관한 고찰)

  • Lee, Kangmin
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.4 s.65
    • /
    • pp.359-368
    • /
    • 2003
  • Design and detailing requirements of seismic provisions for Concentrically Braced Frames (CBF) were specified based on the premise that bracing members with large KL/r and low b/t have superior seismic performance. However, relatively few tests have been done to investigate the cyclic behavior of CBF. Therefore, the question lies on whether the compression member of CBF plays as significant a role as what has been typically assumed by design providers. In this paper, existing experimental data were reviewed to quantify the extent of hysteretic energy achieved by bracing members in past compression tests as well as the extent of degradation of the compression force given repeated cycling loading.

A Study on Brace-height Ratio for Seismic Retrofit of School Building (학교 건축물의 내진 보강을 위한 가새 - 높이비에 관한 연구)

  • Lee, Hwa-Jung;Byon, Dae-Kun;Yoon, Sung-Kee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.4
    • /
    • pp.10-17
    • /
    • 2020
  • The recent earthquake in Korea caused large and small damages to many school building. School building is an important building that is used as a shelter in the event of disaster. Among the seismic retrofit methods, the internal steel braced frame type method is used for its relatively easy construction and excellent performance. In this study, the maximum shear force and displacement were compared and examined by applying the brace frame to existing concrete school buildings. As a result, we verified the adequacy of the analytical model and compared and examined the effect of brace-height ratio on the span of the existing school buildings. The adequacy of the maximum shear force and displacement relationship can be confirmed in the model with a length of 0.3. In addition, seismic frame was applied to the actual non-seismic reinforced concrete school building, and the seismic performance was evaluated by nonlinear static analysis(Push-over analysis) according to the ratio of brace-height. As a result, the increase of the brace-height according to the brace-height ratio has the effect of increasing the maximum shear force and maximum load at the performance point. But the collapse of the braced frame due to the increase in the lateral stiffness occurred, indicating that seismic retrofit according to the proper brace-height is necessary. Therefore, in the seismic retrofit design of brace frame of existing school building, it is necessary to select the proper brace-height after retrofit analysis according to the brace-height ratio.

Seismic Retrofit of Reinforced Concrete Structures Using Steel Braces and Moment Frames (가새와 강골조를 이용한 저층 RC 구조물의 내진보강)

  • Huynh, Chanh Trung;Park, Kyoung-Hoon;Kim, Jin-Koo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.5
    • /
    • pp.509-516
    • /
    • 2010
  • In this study a seismic retrofit scheme for the reinforced concrete moment framed structures was investigated using steel bracing and moment frames. The analysis model structure is a 3-story 3-bay moment frame structure designed only for gravity load. The stress/strain concentration in brace-RC frame connection was investigated using finite element analysis. To prevent premature joint failure, steel moment frames were placed inside of middle bay of the RC frame. Two types of braces, steel braces and buckling restrained braces(BRBs), were used for retrofit, and the ductility and the strength of the structure before and after the retrofit were compared using nonlinear static and dynamic analyses. According to the analysis results, the strength and ductility of the structure retrofitted by the moment frames and braces increased significantly. The added steel frame did not contribute significantly to the increase of lateral strength mainly because the size is relatively small.

Seismic Performance Evaluation of Inverted V Braced Steel Frames with Considering P-Δ Effects: A Case Study (P-Δ 효과를 고려한 역 V형 철골 가새골조의 내진성능평가: 사례연구)

  • Lee, Cheol-Ho;Kim, Jeong-Jae
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.3
    • /
    • pp.97-103
    • /
    • 2004
  • Most of the columns in centrally braced steel frame buildings are usually designed as the gravity columns to reduce connection cost. For a rational seismic performance evaluation of centrally braced steel frame buildings, it is important to properly incorporate in the analysis  the P-${\Delta}$ effects arising from the gravity columns. An effective scheme for the P-${\Delta}$ effects modeling due to the gravity columns was illustrated based on the concept of fictitious leaning column. Seismic performance evaluation of inverted V braced steel frames with or without P-${\Delta}$ effects modeling was conducted by following the FEMA 273 NSP (Nonlinear Static Procedure). The problem in estimating dynamic P-${\Delta}$ modification factor (C3) in FEMA 273 was discussed. The results of this study indicated that the P-${\Delta}$ effects should be included in the seismic performance evaluation of centrally braced steel frames. This study also showed that the inverted V braced frames, retrofitted by applying the tie bars to redistribute the inelastic demand over the height of the building, exhibit significantly improved seismic performance.

Energy Dissipation Demand of Braces Using Non-linear Dynamic Analyses of X-Braced Frame (비선형 동적 해석을 통한 X형 가새골조 내 가새 부재의 에너지 소산)

  • Lee, Kangmin
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.4 s.65
    • /
    • pp.379-388
    • /
    • 2003
  • The response of single story buildings and other case studies were investigated to observe trends and develop a better understanding of the impact of some design parameters on the seismic response of Concentrically Braced Frames (CBF). While many parameters are known to influence the behavior of braced frames, the focus of this study was mostly on quantifying energy dissipation in compression and its effectiveness on seismic performance. Based on dynamic analyses of single story braced frame and case studies, a bracing member designed with bigger R and larger KL/r was found to result in lower normalized cumulative energy ratio in both cases.

Seismic Performance Evaluation of Highrise Steel Diagrid Frames (초고층 철골대각가새골조의 내진성능평가)

  • Kim, Seon-Woong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.3
    • /
    • pp.307-317
    • /
    • 2011
  • This paper is to investigate the possibility of the elastic seismic design for highrise buildings through seismic performance evaluation for potential earthquakes that wind-designed highrise buildings located in strong wind zone and low seismicity can be experienced. Highrise steel diagrid frames which is the most loved structural system in recent years were wind-designed and the substantial system overstrength due to wind design procedure is verified, For the highrise steel diagrid frames, the response spectrum analysis and the seismic performance evaluation by various soil sites were conducted. It was showed that highrise steel diagrid frames with slenderness of greater than 5.2 under strong wind and low seismic zones such as Korea peninsula can resist elastically for the 500 year return period earthquake and have the possibility of seismic design for the 2400 year return period earthquake. In the member level, highrise steel diagrid frames with slenderness of greater than 5.2 all presented the immediate occupancy level regardless of soil sites for the 500 year return earthquake and excluding the $S_E$ soil site for the even 2400 year return period earthquake. In the system level, highrise steel diagrid frames with slenderness of greater than 5.2 showed the immediate occupancy level for $S_A$ and $S_B$ soil sites and the life safety for $S_C$ to $S_E$ soil site in the 500 year return period. The seismic performance level of highrise steel diagrid frames for the 2400 year return period earthquake displayed one step lower than the 500 year return period earthquake.

Seismic Performance Evaluation of Wind-Designed High-rise Steel Diagrid Frames (내풍설계된 초고층 철골대각가새골조의 내진성능평가)

  • Kim, Seon-Woong;Kim, Jong-Ho;Kim, Tae-Jin;Kang, Dae-Eon
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.14-17
    • /
    • 2011
  • 본 논문에서는 강풍대이면서 중/약진대에 위치하는 초고층건물에 내습할 수 있는 잠재적 지진에 대하여 다양한 지반조건에 따른 응답스펙트럼해석과 내진성능평가를 수행하였다. 국내와 같이 강풍대에 위치하면서 중약진대에 속하는 지진환경하에서 세장비 5.2이상의 초고층 철골대각가새골조는 10%/50년 재현주기 지진동에 대해서는 탄성저항가능성을 나타내었고 세장비 6.9이상의 초고층 철골대각가새골조는 2%/50년 재현주기 지진동에 대해서도 탄성적으로 저항할 수 있음을 보여주었다.

  • PDF

Inelastic Behavior and Seismic Retrofit of Inverted V Braced Steel Frames (역V형 철골 가새골조의 비탄성거동 및 내진성능향상 방안에 관한 연구)

  • Kim, Nam Hoon;Lee, Cheol Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.5 s.66
    • /
    • pp.571-578
    • /
    • 2003
  • An effective seismic retrofit scheme for inverted V braced (or chevron type) steel frames was proposed by studying the redistribution of forces in the post-buckling range. The steel frames with chevron bracing are highly prone to soft story response once the compression brace buckles under earthquake loading. This paper shows that the seismic performance of such frames could be significantly improved by supplying tie bars to redistribute the inelastic deformation demand over the height of the building. A practical design method of the retrofit tie bars was also proposed by considering the sequence of buckling occurrence.

Collapse Modes of Steel Ordinary Concentrically Braced Frames According to Unbalanced Forces (불균형력에 따른 철골보통중심가새골조의 붕괴모드)

  • Park, Jin-Young;Kim, Seo-Yeon;Hong, Suk-Jae;Kim, Hyung-Joon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.3
    • /
    • pp.249-257
    • /
    • 2015
  • The KBC2009 first introduces the requirements about vertical unbalanced forces into the design for steel ordinary concentrically braced frames(steel OCBFs), which forces them to easily meet the target seismic performance, called as the life safety performance objective under design based earthquakes(DBEs) pursuing in the KBC2009. However, there is little information on the effects of vertical unbalanced forces to the collapse prevention performance objective under maximum considered earthquakes(MCEs) which is another target seismic performance level implicitly prescribed in ASCE 7-10. It is valuable that the collapse capacities of steel OCBFs designed according to the KBC2009 are investigated. In this paper, the collapse modes of inverted V shaped steel OCBFs excited by MCEs are investigated. The prototype buildings of 5 story steel OCBFs are designed with different site conditions and three types of unbalanced forces are considered in the design stages. The prototype buildings are evaluated their seismic performances and collapse modes by nonlinear static analyses and nonlinear dynamic analyses. Analysis results show that the unbalanced forces significantly affect the seismic performance of the prototype buildings and proper considerations of unbalanced forces are required to achieve the desirable collapse mode and the collapse prevention performance objective.