• 제목/요약/키워드: 철계 파우더

검색결과 2건 처리시간 0.018초

AISI M2 파우더를 이용한 SKD61 재질의 레이저 메탈 디포지션 기초 특성 분석 (Effect analysis in Laser Metal Deposition of SKD61 using AISI M2 power)

  • 김원혁;정병훈;오명환;최성원;강대민
    • 한국기계가공학회지
    • /
    • 제14권3호
    • /
    • pp.50-56
    • /
    • 2015
  • In this study, AISI M2 powder was selected primarily through various pieces of literature in order to improve the hardness and wear resistance. Among the laser metal deposition parameters, laser power was studied to improve the deposition efficiency in the laser metal deposition using a diode-pumped disk laser. An SKD61 hot work steel plate and AISI M2 powder were used as a substrate and powder for laser metal deposition, respectively. Experiments for the laser metal deposition were carried out by changing the laser power and track layer. The quality of the track surface and cross-section after applying the single-layer method was better than that obtained from applying the multi-layer method. As the laser power increased, the track thickness was increased, and the surface roughness deviation was decreased. In laser power condition of 1.6kW, the maximum hardness of the deposition track was 790Hv. This value was 40% better than the hardness of the SKD61 after heat treatment.

AISI M2 파우더를 이용한 레이저 메탈 디포지션의 트랙 특성 분석 (The Characteristics Analysis of Track of Laser Metal Deposition Using AISI M2 Powder)

  • 김원혁;송명환;박인덕;강대민
    • 한국자동차공학회논문집
    • /
    • 제24권4호
    • /
    • pp.463-470
    • /
    • 2016
  • In this paper, the characteristics analysis of LMD track, such as including track structure, track wear resistance and track thickness, were analyzed to enhance the deposition efficiency using a diode-pumped disk laser. SKD61 hot work steel plate and Fe based AISI M2 alloy were used as a the substrate and powder for the LMD process, respectively. The laser power, track pitch and powder feed rate among LMD parameters were adopted to estimate the deposition efficiency. As the laser power is increased, heat input and melting pool on the substrate is grown also increases, so resulting in the increased LMD track thickness was increased. Through EPMA mapping analysis of the cross-section in the LMD track, it was observed that all the elements are evenly distributed inside. Therefore, the entire hardness in the LMD track is expected to be almost uniform regardless of location. The characteristics of the LMD specimen were excellent compared to the STD11 specimen in terms of the wear track width and the wear rate as well as the coefficient of friction. Especially the wear rate of LMD specimen has been significantly reduced by 60 % or more. From Based on the experimental results, the prediction formula of LMD thickness was calculated by using laser power, track pitch and powder feed rate.