• 제목/요약/키워드: 천해음향학

Search Result 77, Processing Time 0.025 seconds

Long-Range Sound Transmission Characteristics in Shallow-Water Channel with Thermocline (수온약층이 존재하는 천해역 수중음향 채널의 장거리 신호 전달 특성)

  • Byun, Sung-Hoon;Kim, Sea-Moon;Lim, Yong-Kon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.33 no.5
    • /
    • pp.273-281
    • /
    • 2014
  • This paper analyzes the effect of a thermocline on the long-range acoustic signal propagation using the experimental data acquired in the shallow water near Jeju island. Temperature and salinity measurement data in Korea Oceanographic Data Center (KODC) show that the seasonal thermocline exists near Jeju island, and, under the thermocline, the bottom loss property strongly affects the long-range propagation of acoustic signal along the down-ward refractive paths. We estimate the bottom loss under the thermocline using experiment data obtained near Jeju island in May, 2013. The result shows that the estimated bottom losses are below 3 dB and the higher level signal is received at the deeper receiver depths. This shows that the acoustic trapping under the thermocline can be a viable long-range signal transmission channel in the shallow water with a thermocline.

Horizontal Cross Correlation of Shallow Water Noise (천해 수중소음의 수평적 상관관계)

  • 이효근;김영선;김성부
    • The Journal of the Acoustical Society of Korea
    • /
    • v.2 no.1
    • /
    • pp.35-40
    • /
    • 1983
  • 수심 65m의 godutr에서 해면으로부터 10m 깊이에 수평 청음기 배열을 설치하여 수중소음의 상 관관계를 측정하였다. 분석은 FFT 방식을 이용하여 63Hz에서 315Hz 까지의 저주파 영역에서 True 상 관계수를 직접 얻었다. Buckingham의 천해모델과 비교한 결과 160 Hz 이하에서는 이론치와 거의 같았 으나 200Hz 이상에서는 이론치와 많은 차이를 보였다. 이는 200 Hz 이상에서 결과치의 Zero-Crossing point 가 이동된 것을 보보인면이나 Kuperman과 Ingenito의 천해 모델에서 NEAR-FIELD의 영향이 Zero-crossing point를 이동시킨다는 사실, 또 주파수가 높아질수록 해상상태의 영향을 받는다는 심해 수중소음의 상관관계에 대한 싫머결과등을 비교해 볼 Eio near-field 소음원의 영향을 무시한채 far-field 소음원의 영향만을 고려한 Buckingham의 천해모델이 갖는 제한성을 나타낸 것이라 볼 수 있다.

  • PDF

Analysis of a fixed source-to-receiver underwater acoustic communication channel parameters in shallow water (송수신기가 고정된 천해 수중음향통신 채널 매개변수 해석)

  • Bae, Minja;Park, Jihyun;Yoon, Jong Rak
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.5
    • /
    • pp.494-510
    • /
    • 2019
  • Underwater acoustic communication channel parameters consist of impulse response, delay spreading, scattering function, coherence bandwidth, frequency selective fading, coherence time and time variant magnitude fading statistics on which communication system modem and channel coding are designed. These parameters are influenced by sound velocity profile, platform motion and sea surface roughness in given acoustical oceanography condition. In this paper, channel model based on phasor, channel simulator, measurement and analysis method of channel parameters are given in a fixed source-to-receiver system and the parameters are analyzed using shallow water experimental data. For two different source-to-receiver ranges of 300 m and 600 m, the parameters are characterized by three multipaths such as a direct, a surface reflection path with time variant scattering and a bottom reflection path. The results present a channel modelling method of a fixed source source-to-receiver system, channel parameters measurement and analysis methods and a system design and performance assessment method in shallow water.

High Frequency Bottom Reverberation Characteristics in Shallow Water (천해 해역에서 측정한 고주파 해저면 잔향음 특성)

  • 박정수;정문섭;최재영
    • The Journal of the Acoustical Society of Korea
    • /
    • v.12 no.6
    • /
    • pp.5-12
    • /
    • 1993
  • 고주파 음원을 사용하여 측정한 천해 해역에서의 잔향음 특성 변화와 해양 환경요소와의 연관성을 고찰하고자 하였다. 여름철에 실시한 현장실험에서 획득한 잔향음신호를 분석하여 다음과 같은 결과를 얻었다. 1) 수직 음속이 음의 기울기를 갖고 있어서 해저면 잔향음이 우세하다. 2) 음파발사 방위각에 따라 19dB 이상의 해저면 잔향음준위 차이를 보인다. 3) 계산된 해저면 후방산란 강도는 기존의 측정자료에 비해 약간 높게 나타난다.

  • PDF

Overview of the KIOST-HYU Joint Experiment for Acoustic Propagation in Shallow Water Geological Environment (천해 지질환경에서의 음파전달 특성 연구를 위한 KIOST-한양대 공동실험 개요)

  • Cho, Sungho;Kang, Donhyug;Lee, Cheol-Ku;Jung, Seom-Kyu;Choi, Jee Woong;Oh, Suntaek
    • The Journal of the Acoustical Society of Korea
    • /
    • v.34 no.6
    • /
    • pp.411-422
    • /
    • 2015
  • This paper presents an overview of the geological environment investigation and underwater acoustic measurements for the purpose of "Study on the Relationship between the Geological Environment and Acoustic Propagation in Shallow Water", which are jointly carried out by KIOST (Korea Institute of Ocean Science & Technology) and Hanyang University in the western shallow water off the Taean peninsula in the Yellow Sea in April-May 2013. The experimental site was made up of various sediment types and bedforms due to the strong tidal currents and coastal geomorphological characteristics. The geological characteristics of the study area were intensively investigated using multi-beam echo sounder, sub-bottom profiler, sparker system and grab sampler. Acoustic measurements with a wide range of research topics in a frequency range of 20~16,000 Hz: 1) low frequency sound propagation, 2) mid-frequency bottom loss, 3) spatial coherence analysis of ambient noise, and 4) mid- frequency bottom backscattering were performed using low- and mid-frequency sound sources and vertical line array. This paper summarizes the topics that motivated the experiment, methodologies of the acoustic measurements, and acoustic data analysis based on the measured geological characteristics, and describes summary results of the geological, meteorological, and oceanographic conditions found during the experiments.

Variability of Vertical Distribution of Volume Scattering Observed in the Shallow Water (천해 체적 산란강도의 수직분포 변동성)

  • 박경주;김은혜;강돈혁;나정열
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.1
    • /
    • pp.69-77
    • /
    • 2003
  • Measurements of backscattered intensity were made over a shallow water using 300 ㎑and 1200 ㎑ bottom mounted ADCP (Acoustic Doppler Current Profiler) to determine the temporal variability of vertical distribution of high-frequency volume scattering strength (Sv). The variability of Sv in relatively deep water column(85 m and 113 m was due to the daily vertical migration, probably of larger zooplankton. However it was not found with 1200㎑ data at shallow water column. From the empirical orthogonal function (EOF) analysis using 1200㎑ data, the vertical distribution of the first mode eigenvectors of Sv is characterized by the presence of the maximum values near the bottom of the water.

Communication Under the Shallow Water Using an Equalizer (등화기를 이용한 천해에서의 수중통신)

  • Yoon, Byung-Woo;Shin, Yoon-Ki;Sung, Koeng-Mo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.8 no.4
    • /
    • pp.13-22
    • /
    • 1989
  • Underwater channels can be regarded as time-varying systems in view of the acoustical characteristics due to the fact that the characteristics of the channel are affected by the environmental and geometrical conditions. Especially in shallow water case, the surface and bottom conduct as a waveguide so echo effect due tu the multipath reflections are severe. Therefore in shallow water communications, it is very important to equalize the transmitted signals distorted by the underwater channels with time-varying multipath fading. In this paper an equalizer system which employs the frequency domain adaptive filter to equalize the channels using inverse modeling technique is introduced.

  • PDF

Underwater Sound Propagation in a range-dependent Shallow water environment (비균질한 천해에서의 수중음파 전파)

  • Na, Jeong-Yeol
    • The Journal of the Acoustical Society of Korea
    • /
    • v.6 no.4
    • /
    • pp.64-73
    • /
    • 1987
  • Low frequency sound propagation in a range-dependent shallow water environment of the Korea Strait has been studied by using the adiabatic coupled mode, ADIAB. The range-dependent environment is unique in terms of horizontal variations of sound velocity profiles, sediment thickness and attenuation coefficients and water depths. For shallow source and receiver depths, the most important mechanism involved in the propagation loss is the depth changing character of mode functions that strongly depends on the local sound velocity profile. Application of the adiabatic coupled mode theory to shallow water environment is reasonable when higher modes are attenuated due to bottom interaction effects. Underwater sound propagation in a range-dependent shallow-water environment.

  • PDF

Broadband Interference Patterns in Shallow Water with Constant Bottom Slope (해저면 경사가 일정한 천해에서의 광대역 간섭 유형)

  • 오철민;오선택;나정열;이성욱
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.5
    • /
    • pp.485-493
    • /
    • 2002
  • Broadband interference patterns are studied using ship as an acoustic source in shallow waters with varying bathymetry. Waveguide invariant index (β) indicating the pattern of constructive (or destructive) interference in range-frequency domain is derived in a waveguide with constant bottom slope based on adiabatic mode theory. Using this invariant, changes of the interference patterns resulting from the variation of bottom bathymetry are analyzed. Results of the analytic interpretation is compared with those from sea experiments and numerical simulations.

Shallow Water High-frequency Reverberation Model (천해 고주파 잔향음 예측모델)

  • 최지웅;윤관섭;나정열;박정수;나영남
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.8
    • /
    • pp.671-678
    • /
    • 2002
  • High-frequency monostatic reverberation model (HYREV: HanYang Univ. REVerberation model) suitable for shallow-water environment is presented. It is difficult to predict reverberation signals in shallow water due to scattering from sea surface and seafloor. The arrival times and transmission losses from the source to scatterers are obtained from the eigenrays. The composite roughness theory is used to predict the boundary scattering. The signals generated by the HYREV and the GSM were compared with the observed signals and it is showed that the HYREV model provided a closer fit to the observed signals than those obtained using the GSM.