• Title/Summary/Keyword: 천부 탄성파

Search Result 92, Processing Time 0.028 seconds

Recent Geomorphological Changes and late Quaternary Depositional Sequence of Gwangyang Bay, southern coast of Korea (한반도 남해안 광양만의 최근 지형변화 및 후기 제4기 퇴적층서 발달)

  • 최동림;현상민;이태희
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.8 no.1
    • /
    • pp.35-43
    • /
    • 2003
  • Recent geomorphological changes and late Quaternary depositional sequences of Gwangyang Bay are studied based on bathymetric maps, surface sediments, and seismic profiles. As a result of the reclamation of coastal area for an industrial complex construction, the coastline of Gwangyang Bay has rapidly been changed and the area of it has now been reduced by about 25 % in the last 30 years. In addition, the bottom topography is actively modified by dredging for navigation channels. In surfical sediment distribution, the western part of Gwangyang Bay is dominated by mud facies, whereas the eastern part of the Bay is dominated by sand-mud mixing facies. Depositional sequences above the basement are divided into two units: Unit I in upper layer and Unit II in lower one. These depositional units are unconformably bounded by middle reflector-M. Unit II, mostly occupying the channel areas, is interpreted as fluvial-origin deposits during sea-level lowstand. Unit I typically shows a progradational pattern from the Seomjin River mouth to the Yeosu Strait, which is interpreted as deltaic deposits supplied from the Seomjin River during the Holocene sea-level highstand. The shallow gas within the sediments Is widely distributed in most area, and locally exposed onto the sea-bed due to dredging.

Shallow Shear-wave Velocities Using the Microtremor Survey Method (상시미동 측정을 통한 천부 횡파속도 연구)

  • Hwang, Yoon-Gu;Kim, Ki-Young
    • The Journal of Engineering Geology
    • /
    • v.16 no.4 s.50
    • /
    • pp.381-392
    • /
    • 2006
  • The passive surface wave survey using microtremor is conducted in areas of crystalline rock basements to obtain average shear-wave velocity structures to 30 m deep (Vs30), on which the earthquake-resistant design standard is based. Test data were recorded at two sites with triangular and L-shaped arrays for 4 seconds with an sampling interval of 2 ms. The microtremor recorded at a site were analysed using the spatial autocorrelation method to obtain phase-velocity spectra and effects of major factors such as size and shape of away and number of record and receiver were examined. At the other site, shear-wave velocities were derived from VSP and microtremor data separately. The results from these two methods agree to each other reasonably well, indicating that the microtremor method can be an effective geophysical tool to measure Vs30.

Application of geophysical exploration methods for safety diagnosis of the basement of stone pagoda (지구물리탐사 방법의 석탑지반 안전진단에의 적용)

  • Suh, Man-Cheol;Oh, Jin-Yong;Kim, Ki-Hyun
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.70-83
    • /
    • 2004
  • The safety diagnosis of cultural assets is Primarily focused on its non-destructiveness. Research on the nondestructive diagnosis and conservation of masonry cultural heritage is the key which is considered by technologic kernel. Geophyscial Prospecting as nondestructive diagnostic technology plays an important role in the characterization of the foundation of stone pagodas. It is natural that understanding of shallow subsurface condition beneath them is essential for their structural safety diagnosis. As an example, the nondestructive geophysical methods were applied to two three-story stone pagodas, Seokgatap (height 10.8 m, width 4.4 m, weight 82.3 ton) and Dabotap (height 10.4 m, width 7.4 m, weight 123.2 ton) which were built in 791 at Bulkuksa temple. An earlier archaeological investigation shows that stone pagodas have experienced severe weathering process and are slightly leaning, which will threaten their stability At the base part of Dabotap, an offset of the stone alignment is also observed. Direct measurements of ultrasonic velocities was introduced for the mechanical properties of the stone The velocity ranges of ultrasonic waves for Dabotap and Seokgatap are 1217${\~}$4403 m/s and 584${\~}$5845 m/s, respectively, and the estimated averages of the uniaxial compressive strength are 463 kg/$cm^2$ and 409 kg/$cm^2$, respectively. Site characteristics, around the pagodas are determined by the measurement of multiple properties such as seismic velocity, resistivity, image of ground-penetrating radar, On the basis of the higher velocity structure, the site of Seokgatap appears to have solider stability than the Seokgatap site. Near the pagodas, higher(up to 2200 $\Omega$m) resistivity is present whereas their outskirts have as low as 200 $\Omega$m. By the combined results of each geophyscial methods, the subsurface boundaries of two stone pagodas are revealed. The Dabotap site is in the form of an octagon having 6-m-long side with the depth of ${\~}$4 m, whereas the Seokgatap site is the 8 ${\times}$ 10 m rectangle with the depth of 3 m. These subsurface structures appear to reflect the original foundations constructed against the stone load of ${\~}8 ton/m^2$. At the subsurface beneath the northeast of each pagoda, low seismic velocity as well as low resistivity is prominent. It is interpreted to represent the weak underground condition which Is the possible cause of the slightly leaning pagodas toward the NNW.

  • PDF

동해 한국대지 암반지역에서 생성되는 자생광물 탐사

  • Jo, Jin-Hyeong;Jeong, Gap-Sik;Kim, Seong-Ryeol;Lee, Jun-Ho;Yu, Lee-Seon;Lee, Jun-Ho;Lee, Seung-Yong;Jang, Nam-Do
    • 한국지구과학회:학술대회논문집
    • /
    • 2010.04a
    • /
    • pp.52-52
    • /
    • 2010
  • 동해 한국대지 남부(south Korea Plateau)에서 2010년 2월에 한국해양연구원의 온누리호를 이용하여 해저지형 및 자생광물 탐사가 실시되었다. 다중빔 음향측심기를 이용한 해저지형 조사는 2-3 km 탐사측선 간격으로 약 400 L-km 정도가 실시되었다. 조사구역 A($37^{\circ}$ 16'-18'N, $130^{\circ}$ 02'-16'E)는 890-1,900 m의 수심범위와 남쪽으로 갈수록 수심이 깊어져 울릉분지(Ulleung Basin)와 연결된다. 크고 작은 소규모의 구릉이 사면을 따라 다수 분포하고 있다. 조사구역 B($37^{\circ}$ 26'-40'N, $130^{\circ}$ 23'-34'E)의 정상부는 900-1,000 m로 비교적 평평하게 나타났고, 남동방향으로는 2,200 m까지 급격하게 수심이 증가하는 사면으로 이루어져 있다. 한국대지내 노출 암반지역은 남동쪽 사면의 일부 지역에 분포하고 있다. 자생광물 탐사는 일차적으로 천부지층 탄성파탐사를 수행하여 시료채취 가능 여부를 현장에서 확인한 후에, A 및 B구역내 11개 지점에서 드렛지를 이용하여 암석시료를 채취하였다. 채취된 암석은 주로 현무암이며, 많은 양의 화산기원 부석(pumice) 및 화산재(box core 자료)도 확인되었다. 또한, 인광석으로 추정되는 암석과, 망간단괴(manganese nodules)와 망간각(manganese crust)의 일부 시료도 채취하는데 성과가 있었다.

  • PDF

An integrated airborne gravity survey of an offshore area near the northern Noto Peninsula, Japan (일본 노토 반도 북쪽 연안의 복합 항공 중력탐사)

  • Komazawa, Masao;Okuma, Shigeo;Segawa, Jiro
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.1
    • /
    • pp.88-95
    • /
    • 2010
  • An airborne gravity survey using a helicopter was carried out in October 2008, offshore along the northern Noto Peninsula, to understand the shallow and regional underground structure. Eleven flight lines, including three tie lines, were arranged at 2 km spacing within 20 km of the coast. The total length of the flight lines was ~700 km. The Bouguer anomalies computed from the airborne gravimetry are consistent with those computed from land and shipborne gravimetry, which gradually decrease in the offshore direction. So, the accuracy of the airborne system is considered to be adequate. A local gravity low in Wajima Bay, which was already known from seafloor gravimetry, was also observed. This suggests that the airborne system has a structural resolution of ~2 km. Reduction of gravity data to a common datum was conducted by compiling the three kinds of gravity data, from airborne, shipborne, and land surveys. In the present study, we have used a solid angle numerical integration method and an iteration method. We finally calculated the gravity anomalies at 300 m above sea level. We needed to add corrections of 2.5 mGals in order to compile the airborne and shipborne gravity data smoothly, so the accuracy of the Bouguer anomaly map is considered to be nearly 2 mGal on the whole, and 5 mGals at worst in limited or local areas.

An Iterative, Interactive and Unified Seismic Velocity Analysis (반복적 대화식 통합 탄성파 속도분석)

  • Suh Sayng-Yong;Chung Bu-Heung;Jang Seong-Hyung
    • Geophysics and Geophysical Exploration
    • /
    • v.2 no.1
    • /
    • pp.26-32
    • /
    • 1999
  • Among the various seismic data processing sequences, the velocity analysis is the most time consuming and man-hour intensive processing steps. For the production seismic data processing, a good velocity analysis tool as well as the high performance computer is required. The tool must give fast and accurate velocity analysis. There are two different approches in the velocity analysis, batch and interactive. In the batch processing, a velocity plot is made at every analysis point. Generally, the plot consisted of a semblance contour, super gather, and a stack pannel. The interpreter chooses the velocity function by analyzing the velocity plot. The technique is highly dependent on the interpreters skill and requires human efforts. As the high speed graphic workstations are becoming more popular, various interactive velocity analysis programs are developed. Although, the programs enabled faster picking of the velocity nodes using mouse, the main improvement of these programs is simply the replacement of the paper plot by the graphic screen. The velocity spectrum is highly sensitive to the presence of the noise, especially the coherent noise often found in the shallow region of the marine seismic data. For the accurate velocity analysis, these noise must be removed before the spectrum is computed. Also, the velocity analysis must be carried out by carefully choosing the location of the analysis point and accuarate computation of the spectrum. The analyzed velocity function must be verified by the mute and stack, and the sequence must be repeated most time. Therefore an iterative, interactive, and unified velocity analysis tool is highly required. An interactive velocity analysis program, xva(X-Window based Velocity Analysis) was invented. The program handles all processes required in the velocity analysis such as composing the super gather, computing the velocity spectrum, NMO correction, mute, and stack. Most of the parameter changes give the final stack via a few mouse clicks thereby enabling the iterative and interactive processing. A simple trace indexing scheme is introduced and a program to nike the index of the Geobit seismic disk file was invented. The index is used to reference the original input, i.e., CDP sort, directly A transformation techinique of the mute function between the T-X domain and NMOC domain is introduced and adopted to the program. The result of the transform is simliar to the remove-NMO technique in suppressing the shallow noise such as direct wave and refracted wave. However, it has two improvements, i.e., no interpolation error and very high speed computing time. By the introduction of the technique, the mute times can be easily designed from the NMOC domain and applied to the super gather in the T-X domain, thereby producing more accurate velocity spectrum interactively. The xva program consists of 28 files, 12,029 lines, 34,990 words and 304,073 characters. The program references Geobit utility libraries and can be installed under Geobit preinstalled environment. The program runs on X-Window/Motif environment. The program menu is designed according to the Motif style guide. A brief usage of the program has been discussed. The program allows fast and accurate seismic velocity analysis, which is necessary computing the AVO (Amplitude Versus Offset) based DHI (Direct Hydrocarn Indicator), and making the high quality seismic sections.

  • PDF

Late Quaternary Sedimentation in the Yellow Sea off Baegryeong Island, Korea (한국 황해 백령도 주변해역 후 제4기 퇴적작용)

  • Cho, MinHee;Lee, Eunil;You, HakYoel;Kang, Nyen-Gun;Yoo, Dong-Geun
    • Geophysics and Geophysical Exploration
    • /
    • v.16 no.3
    • /
    • pp.145-153
    • /
    • 2013
  • High-resolution chirp profiles were analyzed to investigate the echo types of near-surface sediments in the Yellow Sea off the Baegryeong Island. On the basis of seafloor morphology and subbottom echo characters, 7 echo types were identified. Flat seafloor with no internal reflectors or moderately to well-developed subbottom reflectors (echo type 1-1 and 1-2) is mainly distributed in the southern part of the study area. Flat seafloor with superposed wavy bedforms (echo type 1-3) is also distributed in the middle part. Mounded seafloor with either smooth surface or superposed bedforms (echo type 2-1, 2-2, and 2-3) occurs in the middle part of the study area. Irregular and eroded seafloor with no subbottom reflectors (echo type 3-1) is present in the northern part of the study area off the Baegryeong Island. According to the distribution pattern and sedimentary facies of echo types, depositional environments can be divided into three distinctive areas: (1) active erosional zone due to strong tidal currents in the northern part; (2) formation of tidal sand ridges in response to tidal currents associated with sea-level rise distributed in the middle part; and (3) transgressive sand sheets in the southern part. Such a depositional pattern, including 7 echo types, in this area reflects depositional process related to the sea-level rise and strong tidal currents during the Holocene transgression.

Potential of gas generation and/or natural gas hydrate formation, and evidences of their presence in near seafloor sediments of the southwestern Ulleung Basin, East Sea (동해 울릉분지 남서부 천부 퇴적층에서의 가스 생성 및 천연가스 하이드레이트 형성 잠재력과 이들의 부존 증거)

  • Ryu, Byong-Jae;Lee, Young-Joo;Kim, Ji-Hoon;Riedel, M.;Hyndman, R.D.;Kim, Il-Soo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.50-53
    • /
    • 2006
  • Regional geophysical surveys and geological cal studies on natural gas hydrate (NGH) in the East Sea were carried out by the Korea Institute of Geoscience and Mineral Resources (KIGAM) from 2000 to 2004. 16 piston cores, 2270 L-km of multi-channel reflection seismic (MCRS) data and 730 L-km of 3.5kHz Chirp data obtained from the southwestern part of the deep-water Ulleung Basin were analyzed in this study. In piston cores, cracks generally developed parallel to bedding suggest significant gas content. The core analyses showed high total organic carbon (TOC) content, sedimentation rate and heat flow of sediments. These are in favor of the general ion of substantial biogenic methane, which can form the NGH within the stability zone of the near seafloor sediments in the study area. The cores generally show also high residual hydrocarbon gas concentrations for the formation of natural gas hydrates The geophysical indicators of the presence of gas and/or NGH such as bottom simulating reflectors (BSRs), seismic blank Bones, pockmarks and gas seeping features were well defined on the MCRS and Chirp data.

  • PDF

Preliminary Results of the Pre-injection Monitoring Survey at an Offshore CO2 Injection Site in the Yeongil Bay (영일만 해상 CO2 주입 실증 사이트에서의 주입 전 모니터링 탐사 예비결과)

  • Park, Myong-Ho;Lee, Chang Shik;Kim, Byoung-Yeop;Kim, Ji-Hoon;Kim, Kyu Jung;Shinn, Young Jae
    • The Journal of Engineering Geology
    • /
    • v.28 no.2
    • /
    • pp.247-258
    • /
    • 2018
  • In the demonstration-scale offshore $CO_2$ storage project, the monitoring team studies geophysical and geochemical monitoring of $CO_2$ injections in the Yeongil Bay, in which a $CO_2$ test injection (about 100t) was performed in January, 2017 and further injections in larger scales are planned for 2018 and 2019. In this study, the development status of the Korea-type Hydro-Geophone OBS (Ocean Bottom Sensor) and the geochemical baseline survey (focused on some anions of sediment pore water) are suggested as the preliminary results of the pre-injection test.

지구물리탐사자료의 지리정보시스템 해석

  • Han, Su-Hyeong;Kim, Ji-Su;Sin, Jae-U;Gwon, Il-Ryong
    • Journal of the Korean Geophysical Society
    • /
    • v.5 no.1
    • /
    • pp.29-39
    • /
    • 2002
  • Geophysical data sets from the Chojeong area in the Chungbok-Do are compositely studied in terms of multi-attribute interpretations for the subsurface mappings of shallow fracture zones, associated with groundwater reservoir. Utilizing a GIS software, the attribute data were implemented to a database; a lineament from the satellite image, electrical resistivities and its standard deviation, radioactivity, seismic velocity, and bedrock depth. In an attempt to interpret 1-D electrical sounding data in 3-D views, 1-D data are firstly performed horizontal and vertical inter- and extrapolation. Reconstruction of a resistivity volume is found to be an effective scheme for subsurface mapping of shallow fracture zones. Shallow fracture zones are located in the southeastern part of the study area, which are commonly correlated with the various exploration data.

  • PDF