• Title/Summary/Keyword: 천리안해양관측위성

Search Result 63, Processing Time 0.027 seconds

Downscaling of Land Surface Temperature by Combining Communication, Ocean and Meteorological Satellite (천리안 위성의 기상센서와 해양센서를 활용한 지표면 온도 상세화 기법)

  • Jeong, Jaehwan;Baik, Jongjin;Choi, Minha
    • Journal of Wetlands Research
    • /
    • v.19 no.1
    • /
    • pp.122-131
    • /
    • 2017
  • Remotely sensed satellite data is easier to collect and better to represent local phenomenon than a site data. So they can contribute to the activation and development of many research. However, it is necessary to improve spatial resolution suitable for application in the area of complex topography such as the Korean Peninsula. In this study, finer resolution Land Surface Temperature (LST) was downscaled from 4 km to 500 m by combining GOCI with MI data of Communication, Ocean and Meteorological Satellite (COMS). It was then statistically analyzed with LST data observed from the ASOS sites to validate its applicability. As a result, it was found that the errors decreased and correlation increased at the most validation sites, also the spatial distribution analysis showed a similar tendency but it expressed the complicated terrain better. This study suggests possibility of expanding the application range of COMS by producing finer resolution data available in various studies.

Characteristics of the Mission Planning for COMS Normal Operation (천리안위성 정규 운영에 대한 임무계획 특성)

  • Cho, Young-Min;Jo, Hye-Young
    • Aerospace Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.163-172
    • /
    • 2013
  • Communication Ocean Meteorological Satellite (COMS) has the hybrid mission of meteorological observation, ocean monitoring, and telecommunication service. The COMS is located at $128.2^{\circ}$ East longitude on the geostationary orbit and currently under normal operation service since April 2011. For the sake of the executions of the meteorological and the ocean mission as well as the satellite control and management, the satellite mission planning is daily performed. The satellite mission plans are sent to the satellite by the real-time operation and the satellite executes the missions as per the mission plans. In this paper the mission planning for COMS normal operation is discussed in terms of the ground station configuration and the characteristics of daily, weekly, monthly, and seasonal mission planning activities. The successful mission planning is also confirmed with the first one-year normal operation results.

Improvement of GOCI-II Ground System for Monitoring of Level-1 Data Quality (천리안 해양위성 2호 Level-1 영상의 품질관리를 위한 지상국 시스템 개선)

  • Sun-Ju Lee;Kum-Hui Oh;Gm-Sil Kang;Woo-Chang Choi;Jong-Kuk Choi;Jae-Hyun Ahn
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_2
    • /
    • pp.1529-1539
    • /
    • 2023
  • The data from Geostationary Ocean Color Imager-II (GOCI-II), which observes the color of the sea to monitor marine environments, undergoes various correction processes in the ground station system, producing data from Raw to Level-2 (L2). Quality issues arising at each processing stage accumulate step by step, leading to an amplification of errors in the satellite data. To address this, improvements were made to the GOCI-II ground station system to measure potential optical quality and geolocation accuracy errors in the Level-1A/B (L1A/B) data. A newly established Radiometric and Geometric Performance Assessment Module (RGPAM) now measures five optical quality factors and four geolocation accuracy factors in near real-time. Testing with GOCI-II data has shown that RGPAM's functions, including data processing, display and download of measurement results, work well. The performance metrics obtained through RGPAM are expected to serve as foundational data for real-time radiometric correction model enhancements, assessment of L1 data quality consistency, and the development of reprocessing strategies to address identified issues related to the GOCI-II detector's sensitivity degradation.

정지궤도 위성의 원격측정 데이터 흐름 분석 사례 연구

  • Jo, Chang-Gwon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.200.2-200.2
    • /
    • 2012
  • 위성은 임무를 수행함에 있어 수많은 주변장치와 탑재체로부터 데이터를 받는다. 이렇게 획득된 데이터를 활용하여 위성의 자세도 제어하고 전력도 관리하며 탑재체 목적에 따라 기상도 관측하고 해양도 관측하는 임무들을 수행한다. 또한 위성을 개발하면서 수행되는 여러가지 테스트에도 데이터를 활용한다. 이런 일련의 업무를 수행하면서 획득된 데이터는 위성내부의 관련 장치들에 대한 상태 정보를 확인하고 지상국에서 이상유무를 판단할 수 있는 정보도 제공하게 된다. 그러나 원하는 모든 데이터를 지상으로 보내기에는 대역폭이나 저장공간에 제약사항이 있다. 이런 이유로 필요한 데이터를 일정 포맷에 맞도록 정의한 후 데이터를 내려보낸다. 이런 데이터는 지상에서 데이터베이스로 관리된다. 본 논문에서는 국내 최초 정지궤도 위성인 천리안 위성의 데이터베이스를 분석하여 원격측정 데이터의 흐름을 이해하고자 한다.

  • PDF

In-Orbit Test Operational Validation of the COMS Image Data Acquisition and Control System (천리안 송수신자료전처리시스템의 궤도상 시험 운영 검증)

  • Lim, Hyun-Su;Ahn, Sang-Il;Seo, Seok-Bae;Park, Durk-Jong
    • Journal of Satellite, Information and Communications
    • /
    • v.6 no.2
    • /
    • pp.1-9
    • /
    • 2011
  • The Communication Ocean and Meteorological Satellite(COMS), the first geostationary observation satellite, was successfully launched on June 27th in 2010. The raw data of Meteorological Imager(MI) and Geostationary Ocean Color Imager(GOCI), the main payloads of COMS, is delivered to end-users through the on-ground processing. The COMS Image Data Acquisition and Control System(IDACS) developed by Korea Aerospace Research Institute(KARI) in domestic technologies performs radiometric and geometric corrections to raw data and disseminates pre-processed image data and additional data to end-users through the satellite. Currently the IDACS is in the nominal operations phase after successful in-orbit testing and operates in National Meteorological Satellite Center, Korea Ocean Satellite Center, and Satellite Operations Center, During the in-orbit test period, validations on functionalities and performance IDACS were divided into 1) image data acquisition and transmission, 2) preprocessing of MI and GOCI raw data, and 3) end-user dissemination. This paper presents that IDACS' operational validation results performed during the in-orbit test period after COMS' launch.

Phase Noise Evaluation of Multi-mode based-COMS Communication Transponder (다중모드 기반 천리안 위성통신 중계기의 위상잡음 특성 평가)

  • Kim, Young-Wan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.1
    • /
    • pp.20-25
    • /
    • 2012
  • The COMS, which is a multi-purposed satellite that provide the oceanic measurement data and meterological image data, is operating since 2010. Ka-band satellite communication transponder in COMS gets the MSM function that can provide the required multi-beam and transmits the multi-mode signal with high data rate. The phase noise of COMS communication transponder can be increased because of several local oscillators for MSM function and the utilization of Ka-band frequency. The phase noise affects the performance for the multi-mode and high rate data based- transmission method, it is not possible to recover the transmission data in system with the high system phase noise. In this paper, the phase noise of COMS was measured and the effects of the measured phase noise are analysed and evaluated in the viewpoint of the noise bandwidth of transmission system, Also the transmission performances for multi-mode and high rate data are evaluated in the presence of COMS phase noise.

Design and Development of Multiple Input Device and Multiscale Interaction for GOCI Observation Satellite Imagery on the Tiled Display (타일드 디스플레이에서의 천리안 해양관측 위성영상을 위한 다중 입력 장치 및 멀티 스케일 인터랙션 설계 및 구현)

  • Park, Chan-Sol;Lee, Kwan-Ju;Kim, Nak-Hoon;Lee, Sang-Ho;Seo, Ki-Young;Park, Kyoung Shin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.3
    • /
    • pp.541-550
    • /
    • 2014
  • This paper describes a multi-scale user interaction based tiled display visualization system using multiple input devices for monitoring and analyzing Geostationary Ocean Color Imager (GOCI) observation satellite imagery. This system provides multi-touch screen, Kinect motion sensing, and moblie interface for multiple users to control the satellite imagery either in front of the tiled display screen or far away from a distance to view marine environmental or climate changes around Korean peninsular more effectively. Due to a large amount of memory required for loading high-resolution GOCI satellite images, we employed the multi-level image load technique where the image was divided into small tiled images in order to reduce the load on the system and to be operated smoothly by user manipulation. This system performs the abstraction of common input information from multi-user Kinect motion and gestures, multi-touch points and mobile interaction information to enable a variety of user interactions for any tiled display application. In addition, the unit of time corresponding to the selected date of the satellite images are sequentially displayed on the screen and multiple users can zoom-in/out, move the imagery and select buttons to trigger functions.

COMS Shock Test Assessment by Using the Extrapolation Method (외삽법을 이용한 천리안위성 충격시험 분석)

  • Lee, Ho-Hyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.5
    • /
    • pp.439-445
    • /
    • 2012
  • The COMS(Communication, Ocean, and Meteorological Satellite) is subjected to shock loads when the stage or fairing of a launch vehicle is separated and the satellite is separated from the launch vehicle during the launch vehicle flight. And, after the satellite is separated from the launcher, the COMS is subjected to shock loads when the solar array is deployed, Ka-Band communication antenna is deployed, and meteorological imager radiator cover is released. In order to validate the satellite safety against these shock loads on ground, shock tests were performed. In this paper, the shock tests performed in the course of the COMS development are described, and the method to assess the test result is presented with an example of Geostationary Ocean Color Imager(GOCI). In Ariane-5 launch vehicle, the clampband release shock for satellite separation is lower than the fairing or stage separation. In this paper, the extrapolation method to take into account the maximum shock load from the launch vehicle by using the satellite separation shock test result is also introduced.

정지궤도 위성의 충돌방지를 위한 회피기동

  • Lee, Byeong-Seon;Hwang, Yu-Ra;Baek, Myeong-Jin;Kim, Bang-Yeop
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.161.1-161.1
    • /
    • 2012
  • 지구 정지궤도는 위성통신, 지구관측 그리고 우주과학을 위해 매우 귀중하고 제한된 자원으로 인식된다. 이에 따라 Inter-Agency Space Debris Coordination Committee (IADC)에서는 정지궤도에서 수명이 종료되는 위성에 대해서 정지궤도에 영향을 미치지 않도록 더 높은 고도로 폐기기동을 수행하도록 권고하고 있다. 그렇지만 여러 가지 사정으로 정상적인 폐기기동을 수행하지 않은 위성들이 많이 있으며 이와 같은 위성들은 정지궤도에서 운영되고 있는 위성에 접근하여 충돌위험을 야기하고 있다. 우리나라의 정지궤도 통신해양기상위성인 천리안은 2010년 6월 26일에 발사되어 동경 128.2도에서 성공적으로 운영되고 있다. 지난 2년 동안 천리안 위성의 궤도구간에 우주물체가 접근하여 충돌위험이 발생한 사례가 3 건이 있었으며 그 중 한 건인 러시아의 라두가 1-7 위성이 접근한 2011년 2월 7일에는 천리안 위성의 회피기동을 수행하였다. 다른 두 가지 사례는 2011년 6월 19일 러시아의 COSMOS 2379의 접근과 2012년 4월 6일 러시아의 SL-12 R/B(2)의 접근이다. 본 논문에서는 정지궤도 위성을 운영하고 있을 때 다른 우주물체가 접근하여 충돌위험이 발생했을 때 어떤 과정을 거쳐서 회피기동을 수행해야 하는가에 대한 문제를 다루고자 한다. 정지궤도 위성과 우주물체와의 거리차이를 최대화할 수 있는 회피기동 시각을 찾아내고 최근접 시각에 있어서 반경방향, 진행방향, 그리고 수직방향에서의 거리차이를 분석한다.

  • PDF