• Title/Summary/Keyword: 처짐제어

Search Result 58, Processing Time 0.022 seconds

Limit Span/Depth Ratio for Indirect Deflection Control in Reinforced Concrete Flexural Members (철근콘크리트 휨부재의 처짐 간접제어를 위한 한계 지간/깊이-비 연구)

  • Choi, Seung-Won;Kim, Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.1A
    • /
    • pp.35-41
    • /
    • 2011
  • In concrete structural design provisons, two methods are normally provided to control deflection; direct method and indirect method. It is more efficient to use the indirect deflection control by which the span/depth ratio is limited not to exceed an allowable deflection limit. Because actual deflections are affected by many causes, it is complicated to evaluate actual deflections. In this study, limit span/depth ratios are derived from the deflection calculated directly at the serviceability limit state in RC members. The deflection is obtained from using average curvature, which depends on materials model used. The main variables examined are tension stiffening effect, concrete strength, cross section size and compressive steel ratio. It could be appeared that more analytical consistency is secured to use the 2nd order form of tension stiffening effect. And the limit span/depth ratio is dependent on material strength, tensile and compressive steel ratio but it is independent on cross-section size.

Levitation Controller Performance Analysis according to Vehicle Speed (차량 속력에 따른 부상제어기 성능 해석)

  • Kim, Hong-Ju;Kim, Choon-Kyung;Kwon, Soon-Man
    • Proceedings of the KIEE Conference
    • /
    • 2008.10b
    • /
    • pp.458-459
    • /
    • 2008
  • 이 논문은 자기부상열차 속력에 따른 부상제어기 성능을 분석한다. 현재 실용화 사업은 시속 110km/h 속력으로 부상공극 8 mm 기준으로 상하 3 mm 이하 변화를 목표로 개발 중에 있다. 부상제어기의 안정성에 영향을 미치는 외란으로는 가이드웨어 처짐, 크로스아암에 의한 레일 처짐, 레일 불균일, 레일 연결부 단차 등이 있다. 이러한 외란이 복합적으로 작용하지만, 설계 단계에서 각각의 영향을 단순화하여 독립적으로 그 영향을 분석할 필요가 있다. 본 논문에서는 차량속력에 따른 가이드웨어 처짐이 부상제어기에 미치는 영향을 분석한다. 하나의 전자석과 유연레일을 모델링하고 상태궤환을 갖는 제어기를 제안하여 속력에 따른 부상공극 변화를 관찰한다. 모의시험 결과 12 mm 레일의 휘어짐 상황에서 속력에 따라 부상 공극 변화가 커지지만, 실용화 사업의 목표를 달성함을 알 수 있었다.

  • PDF

Theoretical Evaluation of the Post Tensioning Effect in Continuous Slabs (연속 슬래브의 포스트 텐셔닝 보강에 대한 이론적 분석)

  • Kim, Chang-Hyuk;Kim, Kang-Su;Kim, Sang-Sik
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.1
    • /
    • pp.105-116
    • /
    • 2009
  • Reinforced concrete (RC) structures have been most widely used because of their good economic efficiency. However, it is very weak in tensile stresses and difficult to control deflection due to the heavy self-weight of concrete. On the other hand, it is generally known that prestressed concrete structures can be the most effective to overcome the demerits of RC structures by using various tendon lay-out and its amount. In the prestressed concrete members, the inflection points of tendons should be placed effectively for the deflection control and the moment reduction. Therefore, in this study, the equations of tendon profiles are derived in terms of polynomials that satisfy essential conditions of tendon geometries such as inflection points and natural curved shapes of tendons placed in continuous members, from which vertical components of prestressing forces can be also calculated. The derived high order polynomial expression for the distributed shape of the upward and downward forces was transformed to an simplified equivalent uniform vertical force in order to improve the applicability in the calculation of member deflection. The influences of vertical forces by tendons to deflection and moment in a continuous slab were also considered depending on the distance from column face to the location of tendons. The applicability of the proposed method was examined by an example of deflection calculation for the cases of slabs with and without tendons, and the efficiency of deflection control by tendons was also quantitatively estimated.

Applicability of Partial Post-Tension Method for Deflection Control of Reinforced Concrete Slabs (RC슬래브의 처짐제어를 위한 상향긴장식 부분PT공법의 적용)

  • Lee, Deuck-Hang;Kim, Kang-Su;Kim, Sang-Sik;Kim, Yong-Nam;Lim, Joo-Hyuk
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.3
    • /
    • pp.347-358
    • /
    • 2009
  • Recently, it is getting into a good situation for the flat-plate slab system to be applied. The flat-plate slab without beam, however, is often too weak to control deflection properly compared to other typical slab-beam structures, for which the post-tension method is generally regarded as one of best solutions. The post-tension (PT) method can effectively control deflection without increase of slab thickness. Despite this good advantage, however, the application of PT method has been very limited due to cost increase, technical problems, and lack of experiences. Therefore, in order to reduce difficulties on applying full PT method under the current domestic circumstances and to enhance constructability of PT system, this research proposed the partial PT method with top jacking anchorage applied in a part of span as need. For the top jacking anchorage system, the efficiency of deflection control shall be considered in detail because it can vary widely depending on the location of anchorage that can be placed anywhere as need, and tensile stresses induced at back of the anchorage zone also shall be examined. Therefore, in this study, analysis were performed on the efficiency of deflection control depending on the location of anchorage and on tensile stresses or forces using finite element method and strut and tie model in the proposed top jacking anchorage system. The proposed jacking system were also applied to the floor slabs at a construction site to investigate its applicability and the analysis results of slab behavior were compared to the measured values obtained from the PT slab constructed by the partial PT method. The result of this study indicates that the partial PT method can be very efficiently applied with little cost increase to control deflection and tensile stresses in the region as a need basis where problem exists.

Effect of Dampers on Preventing Progressive Collapse in Steel Frames (감쇠기가 철골조 건물의 연쇄붕괴 방지에 미치는 효과)

  • Lee, Seung-Jun;Choi, Hyun-Hoon;Kim, Jin-Koo;Huynh, Chanh Trung
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2010.04a
    • /
    • pp.154-157
    • /
    • 2010
  • 본 논문에서는 비선형 동적해석법을 이용하여 감쇠기의 적용이 철골조 건물의 연쇄붕괴 방지에 미치는 영향을 평가하였다. 단자유도 구조물에서 감쇠비의 변화에 따라 폭발하중이 구조물의 응답에 미치는 영향을 분석하였고, 15층 3경간 철골조 건물에서는 일정한 감쇠비 하에서 경간을 6m, 9m, 12m로 달리 하면서 감쇠기 설치 효과를 비교하였다. 단자유도 시스템의 경우 감쇠비가 증가 할수록 폭발하중에 의한 진동이 빠르게 감소하고 변위의 감소폭도 커지는 경향을 보였다. 15층 철골조 건물에서도 역시 감쇠기를 설치할 경우 수직 처짐 및 초기 진동을 제어하는 효과가 있었다. 구조물의 경간이 증가하여 수직 변위가 증가 할수록, 감쇠기에 의해 소산된 에너지도 증가하기 때문에 수직 처짐 제어효과가 큰 것으로 나타났다.

  • PDF

Deflection Limits based on the Vibration Serviceability of Guideway Structures Considering Maglev Train-Guideway Interaction (자기부상열차와 가이드웨이 상호작용을 고려한 가이드웨이 구조물의 진동사용성 처짐 한계)

  • Lee, Jin Ho;Kim, Sung Il
    • Journal of the Korean Society for Railway
    • /
    • v.20 no.1
    • /
    • pp.111-119
    • /
    • 2017
  • In this study, deflection limits based on the vibration serviceability of guideway structures are proposed considering maglev train-guideway interaction. Equations of motion are derived for a simplified maglev railway. Feedback constants for the control of the electromagnetic force for levitation are optimized in order to minimize the airgap fluctuations. Deflection limits for a guideway are calculated for various operating speeds of a maglev train, span lengths of a guideway, and natural frequencies and damping ratios of the second suspension in order to satisfy the serviceability criteria for airgaps and for the vertical acceleration of a cabin. From the analysis results, proposed are requirements for the second suspension of maglev trains and deflection limits for guideway structures.

A Study on the Compressive Ultimate Strength of Ship Plating with Complicated Shape of the Initial Deflection (복잡한 형상의 초기처짐을 가진 선체판의 압축최종강도에 관한 연구)

  • 고재용;박주신;이계희;박성현
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.04a
    • /
    • pp.83-88
    • /
    • 2004
  • Recently, High Tensile Steel is adapt to thin plate on the steel structure and marine structure is used widely. It is possible for buckling happens great. Specially, Initial deflection of ship structure happens in place absence necessarily by heat processing of welding or cutting etc. This Initial Deflection is exerted negative impact when thin plate absence complicated nonlinear behaviour accompanied secondary buckling. As a result, must idealize initial deflection that occurrence is possible to endow stability and accuracy in the hull structure or marine structure and reflect in early structure design considering secondary buckling. Longi direction of compressive load interacts and analyzed finite element series analysis that apply various kinds initial deflection shape measured actually on occasion that is arranged simply supported condition in this research. Applied ANSYS (elasto-plasticity large deformation finite element method) to be mediocrity finite element program for analysis method and analysis control used in Newton-Raphson method & Arc-length method.

  • PDF

Study for Curling Control of Plain Concrete in Underground Parking Lot (지하주차장 무근콘크리트 컬링제어를 위한 연구)

  • Seo, Tae-Seok;Choi, Hoon-Jae
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.3
    • /
    • pp.243-249
    • /
    • 2018
  • The study for curling control of plain concrete in underground parking lot was conducted in this study. The shrinkage reducing agent(SRA) was used to minimize the curling deformation of plain concrete in underground parking lot. For the quantitative curling control, the simplified prediction method applying the deflection theory of cantilever beam was proposed too, and the validity of prediction method was examined through the comparison between the experimental values and predictive values. In result, the curling of SRA 1.0% concrete was about 30% less than that of SRA 0.0% concrete, and the possibility of curling estimation by the simplified prediction method was confirmed through the comparison between the experimental values and predictive values.

The Dynamic Interaction Analysis of Actively Controlled Maglev and Guideway Bridge Systems (능동제어를 고려한 자기부상열차와 가이드웨이 교량의 동적상호작용 해석)

  • Lee, Jun-Seok;Kwon, Soon-Duck;Yeo, In-Ho;Kim, Moon-Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.4D
    • /
    • pp.523-533
    • /
    • 2009
  • The purpose of the present study is to examine the dynamic interaction characteristics between moving maglev vehicle and guideway bridge system. For this purpose, the dynamic governing equation of 2-dof maglev vehicle using optimal feedback control scheme of LQG was derived with or without consideration of the dynamic interaction between vehicle and guideway bridge system. From the parametric study, it was found that the dynamic interaction effect between bridge and vehicle was large in case of neglecting the railway roughness effect. But if the railway roughness effect was considered, it was observed two analysis results with or without consideration of the dynamic interaction did not show big difference. As a conclusion, it is required to take into account the dynamic interaction effect of bridge and maglev vehicle and the railway roughness for precise evaluation of runnability of maglev vehicle and impact factor of guideway.

A Study on the Snap-through Behaviour of Plate Elements due to the Initial Deflection Shape (초기처짐형상에 따른 판부재의 천이거동에 관한 연구)

  • Park, Joo-Shin;Lee, Kye-Hee;Ko, Jae-Yong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.18 no.1
    • /
    • pp.13-20
    • /
    • 2005
  • Since High Tensile Steel has been widely used to thin plate on the steel structure and marine structure, It has increased possibility of buckling. Especially, initial deflection of ship structure is mainly caused by heat processing of welding or cutting etc. This initial deflection has negative effect to thin plate, which would incur a complicated nonlinear behavior accompanied with secondary buckling. If idealized initial deflection is considered in early marine structure design of secondary buckling, accuracy and reliability will be improved considerably. The measurement data of initial deflection from experiment is applied to finite element series analysis. For FEA(ANSYS), Applied nonlinear buckling analysis is used by Newton-Raphson method & Arc-length method included in this program.