• Title/Summary/Keyword: 처분공

Search Result 355, Processing Time 0.022 seconds

A Study on the Focal Mechanism of the Hongsung Earthquake from the P-Wave Polarity Distributions (초동극성분포를 이용한 홍성지진의 Focal Mechanism 연구)

  • 김준경
    • The Journal of Engineering Geology
    • /
    • v.1 no.1
    • /
    • pp.121-136
    • /
    • 1991
  • The focal mechanism of the Hongsung Earthquake (1978. Oct. 7, M$_L$=5.0, Latitude 36.62N, Longitude 1 26.67E) was evaulated using the polarity distribution of the P-Waveforms. Through the non-linear computer process, the compatibility of polarity distributions of the 9 P-Waveforms observed at teleseismic distances from the Hongsung Earthquake epicenter was investigated to those of the focal mechanism determined from the varying strike, dip and rake angles. The resultant values for the strike and dip angle of the principal fault plane, which apparently matches very well the sunface lineament of the Hongsung region, are determined to be about 247 degree and 78 degree with uncertainties, respectively. However, the rake angle of the focal mechanism has wide range of 40 degree to 160 degree, which is mainly due to the poor coverage of the azimuthal angle of the observed seismic stations. Due to the consistency of principal stress axes, the resultant focal mechanism could support the current stress regime of that region, which may be caused by subduction of the Pacific Plate under the Eurasia Plate along the Japan Trench. It also provides information of seismic source characteristics of the part of the Korean Peninsula for aseismic design criteria such as Site Specific Response Spectrum and Strong Ground Motion Time History for the nuclear power plants and related nuclear waste disposal facility sites.

  • PDF

The Feasibility of Co-Incineration for Municipal Solid Waste and Sewage Sludge through the Change of Heat Loading and Atmospheric Pollutants Loading (하수슬러지와 생활폐기물 혼합소각시 열부하 변화 및 대기오염물질 부하 변화를 통한 혼합소각 가능성에 관한 연구)

  • Cho, Jae-Beom;Kim, Woo-Gu;Yeon, Kyeong-Ho;Shin, Jung-Hun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.9
    • /
    • pp.583-589
    • /
    • 2012
  • The various promotion countermeasures such as solidification, carbonization, and the creation of cement materials have been considered to existing treatment methods such as incineration and the creation of composts, since direct landfill was prohibited for encouraging the recycling based on the sludge treatment on land. The Main objective of this study is to investigate the feasibility of co-incineration for MSW (Municipal Solid Waste) and SS (Sewage Sludge) through the change of heat and atmospheric pollutants. In this study, LHV (Low Heating Value) is 100~300 kcal/kg because the MC (Moisture Content) of de-hydrated sewage sludge is approximately 80%. From the results, we knew the feasibility of co-incineration for MSW (80%) and SS (20%). As the co-incineration rate of SS up to 20% became higher, the loading of heat and atmospheric pollutants was not influenced.

Hydraulic Analysis of a Discontinuous Rock Mass Using Smeared Fracture Model and DFN Model (DFN 모델과 스미어드 균열 모델을 이용한 불연속 암반의 3차원 수리해석)

  • Park, Jungchan;Kim, Jin-Seop;Lee, Changsoo;Kwon, Sangki
    • Tunnel and Underground Space
    • /
    • v.29 no.5
    • /
    • pp.318-331
    • /
    • 2019
  • A three-dimensional(3D) equivalent continuum modeling was performed to analyze hydraulic behavior of rock mass considering discontinuities by using DFN model and smeared fracture model. DFN model was generated by FLAC3D and smeared fracture model was applied by using FISH functions, which is built-in functions in FLAC3D, for equivalent continuum model of fractured rock mass. Comparative analysis with 3DEC, which is for discontinuum analysis, was conducted to verify reliability of equivalent continuum analysis by using FLAC3D. Similar results of hydraulic analysis under the same conditions could be achieved. Equivalent continuum analysis of fractured rock mass by using DFN model was implemented to compare with existing analytical methods for inflow into the tunnel.

Analysis of the Fracture Roughness of Crystalline Rock under Multi-stage Stress Conditions (다단계압력 환경하에서의 결정질 암석의 절리면 거칠기 변화 분석)

  • Choi, Junghae;Kim, Heyjin
    • The Journal of Engineering Geology
    • /
    • v.29 no.3
    • /
    • pp.237-249
    • /
    • 2019
  • The roughness changes on a fracture surface were analyzed via a multi-stage compression test under high temperatures to assess how the cracks in a rock mass affect groundwater movement. The analyzed samples consist of coarse granitic rocks from approximately 40 and 270 m depth, and fine granitic rocks from 500 m depth. The compression test was conducted on $20{\times}40{\times}5mm$ samples using a loading system where the pressure increases in 10 MPa increments to 120 MPa. A high-resolution 3D confocal laser scanning microscope (CLSM) was used to observe the surface changes, including the roughness changes, at each pressure step. The roughness change was calculated based on the roughness factor. The experimental results indicate that the roughness of the fracture surface varies with rock type under the stepwise pressure conditions. These data provide a basis for predicting groundwater flow along rock fractures.

Causes and Countermeasures of School Records Misclassifications : Focusing on the 'General Disposition Authority for School Records' (학교 기록물 분류의 문제점과 개선방안 학교 기록관리기준표 분석을 중심으로)

  • Woo, Jee-won;Seol, Moon-won
    • The Korean Journal of Archival Studies
    • /
    • no.58
    • /
    • pp.299-332
    • /
    • 2018
  • The purpose of this study is to investigate the current status and causes of misclassification of school records and to suggest the directions to improve the School Records Management Criteria Table(general disposition authority for school records), which will lead to misclassification reducement. This study begins with analysing the records created or received in four schools sampled for one year to investigate the status and causes of misclassifications. A advisory group including four administrative officers and seven records managers was formed and group meeting was held twice to identify the causes of the misclassification and to suggest alternatives. In this study, 33 unit tasks(transactions) with frequent misclassification were identified, and the cause of misclassification was analyzed based on focus group interviews. The main causes of misclassification were categorized into two types. This study concludes with suggesting the improvement of the School Records Management Criteria Table for addressing the causes, including commentary reinforcement and the addition of workflow to complex tasks.

Modeling Solar Irradiance in Tajikistan with XGBoost Algorithm (XGBoost를 이용한 타지키스탄 일사량 예측 모델)

  • Jeongdu Noh;Taeyoo Na;Seong-Seung Kang
    • The Journal of Engineering Geology
    • /
    • v.33 no.3
    • /
    • pp.403-411
    • /
    • 2023
  • The possibility of utilizing radiant solar energy as a renewable energy resource in Tajikistan was investigated by assessing solar irradiance using XGBoost algorithm. Through training, validation, and testing, the seasonality of solar irradiance was clear in both actual and predicted values. Calculation of hourly values of solar irradiance on 1 July 2016, 2017, 2018, and 2019 indicated maximum actual and predicted values of 1,005 and 1,009 W/m2, 939 and 997 W/m2, 1,022 and 1,012 W/m2, 1,055 and 1,019 W/m2, respectively, with actual and predicted values being within 0.4~5.8%. XGBoost is thus a useful tool in predicting solar irradiance in Tajikistan and evaluating the possibility of utilizing radiant solar energy.

Investigation on Water Leakage-Induced Tunnel Structure and Ground Responses Using Coupled Hydro-Mechanical Analysis (수리역학 연계해석을 이용한 누수로 인한 터널 구조물 및 지반 거동의 분석)

  • Dohyun Park
    • Tunnel and Underground Space
    • /
    • v.33 no.4
    • /
    • pp.265-280
    • /
    • 2023
  • Water leakage in tunnels is a defect that can affect tunnel stability and the ground movement by changing the stress and pore water pressure of the surrounding ground. Long-term or large-scale water leaks may lead to damage of tunnel structure and the surrounding environment, such as tunnel lining instability and ground surface settlement. The present study numerically investigated the effects of water leakage on the structural stability of a tunnel and the ground behavior. The tunnel was assumed to be under undrained conditions for preventing the inflow of the surrounding water and leaks occurred in the concrete lining after completion of the tunnel construction. A coupled hydro-mechanical analysis using a TOUGH-FLAC simulator developed in Python was conducted for assessing the leakage induced-behavior of the tunnel structure and ground under different conditions of the amount and location of water leak. Additionally, the effect of hydro-mechanical coupling terms on the results of coupled response was investigated and discussed.

Groundwater Flow Modeling in a Block-Scale Fractured Rocks considering the Fractured Zones (단열대의 영향을 고려한 블록 규모 단열 암반에서의 지하수 유동 모의)

  • Ko, Nak-Youl;Ji, Sung-Hoon;Koh, Yong-Kwon;Choi, Jon-Won
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.8 no.2
    • /
    • pp.159-166
    • /
    • 2010
  • The block-scale groundwater flow system at Olkiluoto site in Finland was simulated. The heterogeneous and anisotropic hydraulic conductivity field for the domain was constructed from the discrete fracture network, which considered only the fractured zones identified in the deep boreholes installed in the study site. The groundwater flow model was calibrated by adjusting the recharge rate and the transmissivities of the fractured zones to fit the calculated hydraulic heads and into- and out-flow rates in the observation intervals of the boreholes with the observed ones. In the calibrated model, the calculated flow rates at some intervals were not in accordance with the observed ones although the calculated hydraulic heads fit well with the observed ones, which revealed that the number of the conduits for groundwater flow is insufficient in the conceptual model for groundwater flow modeling. Therefore, it was recommended that the potential local conduits such as background fractures should be added to the present conceptual model.

The Engineering Characteristics of the Sludge Mixed Soil (슬러지 혼합토의 공학적 특성)

  • Kim, JungUn;Kim, MyeongKyun;Bae, WooSeok
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.5
    • /
    • pp.43-50
    • /
    • 2011
  • As a result of population growth and economic growth, household and industrial wastes continue to rapidly increase every year. Especially, sewage sludge produced at final stage is increasing with the constant construction and putting in good order of the sewage plant. In addition to the government's prohibition for filling up the sludge, it became more and more difficult to discharge wastes to the sea as London Dumping Convention '96 came into effect. And sewage sludge and the livestock wastes are expected to be thoroughly prohibited from discharging to the sea from 2012. So we need desperately economical and useful alternatives to compact and reuse these wastes. The purpose of this study is to evaluate the utilization of solidified sludge-soil mixture as an enhancement and covering material. To determine the proper mixed ratio of solidified sludge, this study conducted basic physical properties tests, compaction tests, uniaxial compression tests, and permeability test. It was found that the higher the ratio of solidified sludge, the lower the coefficient of permeability. Upon the results of particle size distribution, the mixed ratio of solidified sludge that meet the enhancement material condition was 59% or lower for SP granite soil and 48% or lower for SM granite soil respectively.

Hydrogeological properties around the KURT (KURT 주변지역의 수리지질특성 연구)

  • Lee, Jin-Yong;Kim, Kyung-Su;Park, Kyung-Woo;Han, Woon-Woo
    • The Journal of Engineering Geology
    • /
    • v.20 no.2
    • /
    • pp.121-126
    • /
    • 2010
  • Current technology for radioactive waste disposal facility is operated as part of KURT site characterization in terms of reliability assessment is conducted to expand. In this study, a geological model of KURT surrounding area on the basis of flow characteristics of the site-scale hydrogeological study was about. Distributed in the study area into four boreholes were plotted using the stereo net NS, NW, EW, Low-angle fracture group was able to identify the components of geological models and include top soil layer, belt of weathering, Low-angle fracture zone, fracture zone was divided into. Separated by fracture of the hydraulic test of through the groundwater aquifer that provides the flow hydraulic conductivity and insulation hydraulic affecting the slope of the normal distribution for the size and direction by performing statistical analysis of fracture in the direction of local ns The advantage was confirmed. In addition, Low-angle fracture hydraulic conductivity of the value of 3.61e-07 m/s has a value greater than the major fracture, the fracture zones exist in the base rock and base rock and the hydraulic characteristics of the different methods applied and had to have a different interpretation judged by was.