• Title/Summary/Keyword: 채터링 문제

Search Result 14, Processing Time 0.018 seconds

Tracking Control of Nonlinear System using the Variable Structure Control with Sliding Sector (슬라이딩 섹터를 갖은 가변구조제어를 이용한 비선형시스템의 추적제어)

  • Han, Jong-Kil;Son, Yong-Su
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.2 no.2
    • /
    • pp.67-74
    • /
    • 2007
  • Chattering phenomenon is still a large drawback of VSS. To overcome this problem, various approaches have been reported. A new notion of sliding sector has been proposed recently. Inside this sector, a kind of norm of the state decreases without control input. Therefore, so long as the state is constrained inside this sector, the norm of the state approaches to zero. The sliding sector theory is elementary study step and is studied about only linear systems. In this paper, new methods of the tracking control of unstable nonlinear systems using the sliding sector is proposed. This paper analyzes the stability, using Lyapunov function on the sliding sector. Through the computer simulations for an inverted pendulum system, it is verified that sliding sector control is capable to reduce the chattering.

  • PDF

Nonlinear Control using the Variable Structure Control with Sliding Sector (슬라이딩 섹터를 갖은 가변구조제어를 이용한 비선형제어)

  • 한종길;손영수;배상현
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.4
    • /
    • pp.807-814
    • /
    • 2004
  • Chattering phenomenon is still a large drawback of VSS. To overcome this problem, various approaches have been reported. A new notion of sliding sector has been proposed recently. Inside this sector, a kind of norm of the state decreases without control input. Therefore, so long as the state is constrained inside this sector, the norm of the state approaches to zero. The sliding sector theory is elementary study step and is studied about only linear systems. In this paper, new methods of stabilizing unstable nonlinear systems using the sliding sector is proposed. This paper analyzes the stability, using Lyapunov function on the sliding sector. Through the computer simulations for an inverted pendulum system, it is verified that sliding sector control is capable to reduce the chattering.

Suppression of Coupled Pitch-Roll Motions using Quasi-Sliding Mode Control (준 슬라이딩 모드 제어를 이용한 선박의 종동요 및 횡동요 억제)

  • Lee, Sang-Do;Cuong, Truong Ngoc;Xu, Xiao;You, Sam-Sang
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.2
    • /
    • pp.211-218
    • /
    • 2021
  • This paper addressed the problems of controlling the coupled pitch-roll motions in a marine vessel exposed to the regular waves in the longitudinal and transversal directions. Stabilization of the pitch and roll motions can be regarded as the essential task to ensure the safety of a ship's navigation. One of the important features in the pitch-roll motions is the resonance phenomena, which result in unexpected large responses in terms of pitch and roll modes in some specific conditions. Besides, owing to its inherent characteristics of coupled combination and nonlinearity of restoring terms, the vessel shows various dynamical behaviors according to the system parameters, especially in the pitch responses. Above all, it can be seen that suppression of pitch rate remains the most significant challenge to overcome for ship maneuvering safety studies. To secure the stable upright condition, a quasi-sliding mode control scheme is employed to reduce the undesirable pitch and roll responses as well as chattering elimination. The Lyapunov theory is adopted to guarantee the closed stability of the pitch-roll system. Numerical simulations demonstrate the effectiveness of the control scheme. Finally, the control goals of state convergences and chattering reduction are effectively realized through the proposed control synthesis.

Modified Lorenz Chaos Synchronization Via Active Sliding Mode Controller (능동 슬라이딩 모드 제어기를 이용한 변형된 Lorenz 카오스 동기화)

  • Ryu, Ki-Tak;Lee, Yun-Hyung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.7
    • /
    • pp.16-23
    • /
    • 2018
  • Chaos is one of the most significant topics in nonlinear science, and has been intensively studied since the Lorenz system was introduced. One characteristic of a chaotic system is that the signals produced by it do not synchronize with any other system. It therefore seems impossible for two chaotic systems to synchronize with each other, but if the two systems exchange information in just the right way, they can synchronize. This paper addresses the problem of synchronization in a modified Lorenz chaotic system based on active control, sliding mode control, and the Lyapunov stability theory. The considered synchronization scheme consists of identical drive and response generalized systems coupled with linear state error variables. For this, a brief overview of the modified Lorenz chaotic system is given. Then, control rules are derived for chaos synchronization via active control and slide mode control theory, with a strategy for solving the chattering problem. The asymptotic stability of the overall feedback system is established using the Lyapunov stability theory. A set of computer simulation works is presented graphically to confirm the validity of the proposed method.