• Title/Summary/Keyword: 채움벽체

Search Result 64, Processing Time 0.026 seconds

Economic Evaluation on Geosynthetic Reinforced Abutment for Railways (특정형상의 인공자갈이 혼합된 도상자갈층의 지지성능과 응력전달특성)

  • Kim, Dae Sang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.12
    • /
    • pp.15-20
    • /
    • 2019
  • This paper evaluated the construction costs of 11 design cases to decrease the horizontal forces applied to the abutment. They include two abutment types, which are to improve backfill materials for a reversed T-shaped abutment and geosynthetic Reinforced Abutment for Railways (RAR). The first type of economic analysis was that the internal friction angles of backfill materials were increased from Φ=35° to Φ=40° and 50° for a reversed T-shaped abutment. In addition, the second type was the cases with the design of geosynthetic RAR. When friction angles of 40° or 50° were applied through the improvement of the backfill material, the decrease in construction cost of the abutment was not large (2.0~3.9%), even though the horizontal forces applied to the abutment had decreased to 18~48%. In the case of applying the RAR, however, a maximum 30% cost reduction was evaluated by the decrease in horizontal force to "0" theoretically. The cost reduction resulted from the decrease in wall thickness, base slab size, and number and material change of pile foundation for the abutment.

Stability evaluation of reinforced earth walls based on large-scale modular blocks (대형 축조블록을 이용한 보강토옹벽의 안정성 평가)

  • Han, Jung-Geun;Kim, Min-Woo;Hong, Kikwon;Yun, Jung-Mann
    • Journal of the Korean Geosynthetics Society
    • /
    • v.13 no.4
    • /
    • pp.143-151
    • /
    • 2014
  • This paper describes external and internal stability of reinforced earth wall using large-scale modular block and geogrid reinforcement. The evaluation for external and internal stability was conducted to analyze effect of wall height, reinforced soil (or backfill soils) and reinforcement strength. The external stability showed that the analysis cases were satisfied with design criteria, when the required minimum length and vertical spacing of reinforcement were 0.7H and 1m, respectively. The internal stability conformed that some cases were satisfied with design criteria in $25^{\circ}$ of internal friction angle of reinforced soil. Expecially, it will be applicable as wall structure considering a structural stability and economic efficiency based on evaluation of internal stability.

Effect of Compaction Method on Induced Earth Pressure Using Dynamic Compaction Roller (진동롤러에 의한 다짐방법이 인접구조물의 다짐토압에 미치는 영향)

  • Roh, Han-Sung
    • International Journal of Highway Engineering
    • /
    • v.3 no.4 s.10
    • /
    • pp.127-136
    • /
    • 2001
  • To increase the structural integrity of concrete box culvert good compaction by the dynamic compaction roller with bi9 capacity is as effective as good backfill materials. It is needed for effective compaction that a compaction roller closes to concrete structure with high frequency. However structural distress of the culvert could be occur due to the excessive earth pressure by great dynamic compaction load. To investigate the characteristics of Induced stress by compaction, a box culvert was constructed with changing cushion materials and compaction methods. Two types of cushion material such as tire rubber chip and EPS(Expanded Polystyrene) were used as cushion panels and they are set on the culverts before backfill construction. Laboratory test result of cushion material says that the value of dynamic elastic modulus of rubber is lesser than that of EPS. On the other hand, material damping of rubber material is greater than that of EPS. In most case, dynamic compaction rollers with 10.5 ton weights were used and vibration frequency was applied 30Hz for the great compaction energy. This paper presents the main results on the characteristics of dynamic earth pressures during compaction. The amounts of induced dynamic pressures$(\Delta\sigma\;h)$ by compaction are affected with construction condition such as compaction frequency, depth of pressure cell, distance between roller and the wall of culvert and roller direction. Based on the measured values dynamic lateral pressure on the culverts, it could be said that orthogonal direction of roller to the length of culvert is more effective to compaction efficiency than parallel direction.

  • PDF

Residual Seismic Capacity Evaluation of RC Frames with URM Infill Wall Based on Residual Crack Width and Damage Class (잔류균열폭 및 손상도에 기초한 무보강 조적벽체를 갖는 RC 골조의 잔존내진성능 평가)

  • Choi, Ho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.13 no.5
    • /
    • pp.41-50
    • /
    • 2009
  • Following an earthquake, the major concerns for damaged buildings are their safety/risk in the event of aftershocks, and thus a quantitative damage assessment must be performed in order to evaluate their residual seismic capacity and to identify necessary actions for the damaged buildings. Post-event damage evaluation is therefore as essential for the quick recovery of a damaged community as pre-event seismic evaluation and strengthening of vulnerable buildings. The objective of this study is to develop a post-earthquake seismic evaluation method for RC frames with URM infill wall for typical school buildings. For this purpose, full-scale, one-bay, single-story specimens having different axial loads in columns are tested under cyclic loadings. During the tests, residual crack widths, which can also be found in damaged buildings, are measured in order to estimate the residual seismic capacity from the observed damage. In this paper, the relationship between the measured residual crack width and the residual seismic capacity is discussed analytically and experimentally, and reduction factors are proposed to estimate the residual seismic capacity based on the observed damage level.

Study on the Development of Reinforced Earth Retaining Wall (보강옹벽개발연구)

  • 유용환
    • Geotechnical Engineering
    • /
    • v.2 no.3
    • /
    • pp.51-66
    • /
    • 1986
  • The design of fabric reinforced retaining wall structure was discussed in this article. It was confirmed that the reinforced retaining earth wall which was designed by new theoretical formulae developed this time was stable structurally and economically. The plastic fabric filter which was placed in layers behind the facing element reduced the lateral earth pressure on the wall elements in comparison with a conventional retaining earth walls. The reinforcing characteristics of earth wall was governed by the spacing of fabric layers, effective length of fabrics, particle distribution and compaction, and thus it is essential that, in the construction field, the reinforcing strips should be selected in order to develop the maximum friction forces bet.eon soil and fabric filters. The maximum tensile stress developed from the reinforcing strips was appeared at a little far distance from the back of skin element and it was not well agreed with the Rankine's theory but distributed well as a symmetrical shape against the point of the maximum tensile stress. The total length of the different layers should be sufficient so that the tension in the fabric strip could be transferred to the backfill material. Also the total stability of reinforced earth wall should be checked with respect to a failure surface which extended blond the different lathers.

  • PDF

Behaviour of Reinforced Earth Wall with Steel Framed-Facing based on Field Test (현장시험을 이용한 강재틀 보강토옹벽의 안정성 평가)

  • Lee, Kwang-Wu;Cho, Sam-Deok;Han, Jung-Geun;Hong, Ki-Kwon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.10 no.4
    • /
    • pp.37-47
    • /
    • 2011
  • This paper describes the stability evaluation of reinforced earth wall with steel framed-facing based on field test. The reinforced earth wall with steel framed-facing is composed of wall facing, reinforcement and backfill soil. The wall facing is assembled by steel frames and the aggregates are filled in that. The reinforcement is steel strip type based on bearing resistance. Field test is conducted to evaluate for two separate sections and the measurement is conducted according to construction elapsed time of structure for earth pressure, horizontal displacement of wall facing and reinforcement strain. The evaluation results show that the measured earth pressure is less than theoretical earth pressure due to dispersion effect of earth pressure by the applied reinforcement. Also, the horizontal displacement of wall facing satisfied a empirical criteria and the measured strain of reinforcement had nearly no effect on stability of structure. Therefore, the reinforced earth wall with steel framed-facing has a structural stability and it can be commonly used in field.

Behavior of Walls of Open-cell Caissons Using Filler under Abnormally High Waves (고파랑 대비 채움재를 이용한 오픈 셀 케이슨의 전단 벽체 거동 분석)

  • Seo, Jihye;Won, Deokhee;Park, Woo-Sun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.29 no.2
    • /
    • pp.83-91
    • /
    • 2017
  • In order to cope with the abnormally high waves during the storm surge due to climate change, various methods have been proposed for interlocking adjacent caissons to enhance stability of harbor structures. Among the methods, it was studied the method based on an open-cell caisson having reduction effect increasing the cohesion with adjunction caissons by filling materials such as crushed rocks in an inter-cell formed by two facing open-cells which consist of transverse walls. It is necessary to investigate the shear behaviors of an inter-cell to secure the stability using calculating shear forces on inter-cell under oblique wave loadings. It was analyzed the shear force share ratio with the length of internal and external wall and the number of internal walls. Numerical results show that 60~70% of the shear load is transmitted to adjacent caisson through the internal walls, more than 30% is through the external wall. It was applicable in the assumption that filling materials was uniformly distributed in inter-cells, and further studies were worth consideration on other conditions under construction.

Seismic Fragility Evaluation of Inverted T-type Wall with a Backfill Slope Considering Site Conditions (사면 경사도가 있는 뒷채움토와 지반특성을 고려한 역T형 옹벽의 지진시 취약도 평가)

  • Seo, Hwanwoo;Kim, Byungmin;Park, Duhee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.41 no.5
    • /
    • pp.533-541
    • /
    • 2021
  • Retaining walls have been used to prevent slope failure through resistance of earth pressure in railway, road, nuclear power plant, dam, and river infrastructure. To calculate dynamic earth pressure and determine the characteristics for seismic behavior, many researchers have analyzed the nonlinear response of ground and structure based on various numerical analyses (FLAC, PLAXIS, ABAQUS etc). In addition, seismic fragility evaluation is performed to ensure safety against earthquakes for structures. In this study, we used the FLAC2D program to understand the seismic response of the inverted T-type wall with a backfill slope, and evaluated seismic fragility based on relative horizontal displacements of the wall. Nonlinear site response analysis was performed for each site (S2 and S4) using the seven ground motions to calculate various seismic loadings reflecting site characteristics. The numerical model was validated based on other numerical models, experiment results, and generalized formula for dynamic active earth pressure. We also determined the damage state and damage index based on the height of retaining wall, and developed the seismic fragility curves. The damage probabilities of the retaining wall for the S4 site were computed to be larger than those for the S2 site.

Effects of Vertical Spacing and Length of Reinforcement on the Behaviors of Reinforced Subgrade with Rigid Wall (보강재 간격 및 길이가 강성벽 일체형 보강노반의 거동에 미치는 영향)

  • Kim, Dae-Sang;Park, Seong-Yong;Kim, Ki-Hwan
    • Journal of the Korean Geosynthetics Society
    • /
    • v.11 no.4
    • /
    • pp.27-35
    • /
    • 2012
  • Facings of mechanically stabilized earth retaining walls have function to fix the reinforcement and prevent backfill loss, but the walls are lack of structural rigidity capable of resisting applied loads. The reinforced subgrade with rigid wall was developed to have the structural functions under train loading. Though it has lots of advantages such as small deformation after construction, its negative side effects of economics and difficult construction were mainly mentioned and not practically used. To apply it for railroad subgrade, this study focus on the construction cost down and the enhancement of constructability without functional loss. To do so, the behaviors of reinforced subgrade with rigid wall were evaluated with the change of the vertical spacing and length of reinforcement. Small scale model tests (1/10 scale) and 3 m full scale tests were performed to evaluate deformation characteristics of reinforced subgrade under simulated train loading. Even though it uses short reinforcement, it showed small horizontal displacement of wall and plastic settlement of subgrade. Also, it was verified that not only 30 cm but also 40 cm of vertical spacing of reinforcement had good performance in serviceability aspects.

Behavior Characteristics of Composite Reinforced Earth with Improved Soil Surface and Geogrid-reinforced Backfill (지반개량재 전면토체와 지오그리드 보강 배면토체로 형성된 복합보강토의 거동특성)

  • Bhang, In-Hwang;Kim, Tae-Heon;Kim, You-Seong;Kim, Jae-Hong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.12
    • /
    • pp.27-34
    • /
    • 2016
  • Many steepened slopes have become increasingly advantageous because of the desire to increase land usage and decrease site development costs. The proven concept of tensile reinforcement allows construction of slopes with far steeper face angles than the soils natural angle. Steepened slope face reinforced with improved soil can increase land usage substantially while providing a natural appearance. The paper presents composite reinforced earth with improved soil surface and geogrid-reinforced backfill. For the stability of the steepened slope, the behavior of the composite reinforced earth are validated and verified by case study and numerical analysis. The case study has performed to investigate the deformation of reinforce soil slope for 14 months. Its horizontal behavior by general vertical load shows within the safe range (0.5% of structure height). As a result of numerical analysis and case study, the reinforcement effect of the steepened slope technique using improved soil is sufficient to be constructed as reinforced soil slope.