• Title/Summary/Keyword: 참 난수

Search Result 3, Processing Time 0.017 seconds

True Random Number Generator based on Cellular Automata with Random Transition Rules (무작위 천이규칙을 갖는 셀룰러 오토마타 기반 참난수 발생기)

  • Choi, Jun-Beak;Shin, Kyung-Wook
    • Journal of IKEEE
    • /
    • v.24 no.1
    • /
    • pp.52-58
    • /
    • 2020
  • This paper describes a hardware implementation of a true random number generator (TRNG) for information security applications. A new approach for TRNG design was proposed by adopting random transition rules in cellular automata and applying different transition rules at every time step. The TRNG circuit was implemented on Spartan-6 FPGA device, and its hardware operation generating random data with 100 MHz clock frequency was verified. For the random data of 2×107 bits extracted from the TRNG circuit implemented in FPGA device, the randomness characteristics of the generated random data was evaluated by the NIST SP 800-22 test suite, and all of the fifteen test items were found to meet the criteria. The TRNG in this paper was implemented with 139 slices of Spartan-6 FPGA device, and it offers 600 Mbps of the true random number generation with 100 MHz clock frequency.

True Random Number Generation Method by using the Moire Fringe (무아레 무늬를 이용한 참 난수 생성 방법)

  • kang, Hyeok;Lee, Keun-Ho
    • Journal of Internet of Things and Convergence
    • /
    • v.2 no.1
    • /
    • pp.23-27
    • /
    • 2016
  • There is Generated Moire fringe by fresnel diffraction that explains one of light's physical phenomenon and interference. In this paper, we propose to generate true random numbers by Moire fringe should be used by not pseudo-random number in cryptosystem.

Correlation Power Analysis Attack on Lightweight Block Cipher LEA and Countermeasures by Masking (경량 블록암호 LEA에 대한 상관관계 전력분석 공격 및 마스킹 대응 기법)

  • An, Hyo-Sik;Shin, Kyung-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.7
    • /
    • pp.1276-1284
    • /
    • 2017
  • Lightweight Encryption Algorithm (LEA) that was standardized as a lightweight block cipher was implemented with 8-bit data path, and the vulnerability of LEA encryption processor to correlation power analysis (CPA) attack was analyzed. The CPA used in this paper detects correct round keys by analyzing correlation coefficient between the Hamming distance of the computed data by applying hypothesized keys and the power dissipated in LEA crypto-processor. As a result of CPA attack, correct round keys were detected, which have maximum correlation coefficients of 0.6937, 0.5507, and this experimental result shows that block cipher LEA is vulnerable to power analysis attacks. A masking method based on TRNG was proposed as a countermeasure to CPA attack. By applying masking method that adds random values obtained from TRNG to the intermediate data of encryption, incorrect round keys having maximum correlation coefficients of 0.1293, 0.1190 were analyzed. It means that the proposed masking method is an effective countermeasure to CPA attack.