This paper proposes the method of image cartooning, that makes cartoon-like images of a target, using reference images. We deform a target image using pre-defined reference images. For this deformation, we extract feature points from the target image by Active Appearance Model(AAM) and apply the warping method to the target using feature points of target and feature points of reference image as a basis of warping function. We create simplified cartoon-like images by abstraction of the deformed target image and drawing of edges and quantization of luminance of the abstracted image. Two main concept of cartoon(exaggeration and simplification) is inhered in this method when we use a exaggerated cartoon image as a reference image. It is possible for this method to create various results by control of warping and change of reference image.
Kim, Hyo-Won;Ki, Hyun-Woo;Lee, Ho-Hyun;Oh, Kyoung-Su
한국HCI학회:학술대회논문집
/
2007.02c
/
pp.170-175
/
2007
영상 재투영이란, 깊이 맵을 투영하여 임의의 시점에서 본 이미지를 생성해내는 기법을 말한다. 기존의 CPU를 이용한 영상 재투영 기법들의 가장 큰 단점은 CPU와 GPU 간의 데이터 복사가 일어나고 재투영 연산 자체의 속도가 느리기 때문에 실시간 렌더링이 불가능 하다는 것이다. 따라서 본 논문에서는 GPU를 이용하여 영상 재투영을 구현하고 실시간에 이미지를 렌더링하는 기법을 소개한다. 우리의 기법은 입력으로 참조 이미지와 해당 이미지의 깊이 맵이 주어졌을 때, 임의의 시점에서 보이는 새로운 이미지를 실시간으로 생성한다. 임의의 시점에서 이미지를 생성하기 위해, 각 픽셀에서 참조 이미지에 해당하는 평면을 렌더링하여 시점 반대 방향의 광선을 생성한다. 이 광선을 참조 이미지의 투영 공간으로 변환한 후, 광선과 깊이 맵간의 교차점을 찾는다. 이렇게 찾아낸 깊이 맵의 교차점과 일치하는 참조 이미지의 픽셀 색으로 새로운 시점의 이미지를 만들어 낼 수 있다. 이와 같은 기법은 기하 정보의 복잡도와 관계없이 수십 프레임의 속도로 실시간 렌더링이 가능하다.
Journal of the Korea Society of Computer and Information
/
v.12
no.3
/
pp.67-73
/
2007
This paper presents a panoramic reference image generation based automatic algorithm for moving objects detection robust to illumination variations under moving camera. Background image is generated by rotating the fixed the camera on the tripod horizontally. aligning and reorganizing this images. In generation of the cylindrical panoramic image, most of previous works assume the static environment. We propose the method to generating the panoramic reference image from dynamic environments in this paper. We develop an efficient approach for panoramic reference image generation by using accumulated edge map as well as method of edge matching between input image and background image. We applied the proposed algorithm to real image sequences. The experimental results show that panoramic reference image generation robust to illumination variations can be possible using the proposed method.
본 논문에서는 회화적 렌더링에서 칼라변환을 이용한 브러쉬 스트로크의 생성에 관한 새로운 알고리즘을 제안한다. 본 논문의 브러쉬 스트로크 생성을 위한 전체적인 구성은 다음과 같다. 첫째, 두 장의 사진(한 장의 소스 이미지와 한 장의 참조 이미지)을 입력으로 하여 칼라 변환 이론을 적용하여 색상 테이블이 바뀐 새로운 이미지를 생성한다. 이 방법은 소스 이미지의 칼라 분포 형태를 창조 이미지의 칼라 분포 형태로 변환하기 위해, 선형 히스토그램 매칭이라 불리는, 간단한 통계학적 방법을 이용한다. 둘째, 가우시안 블러링과 소벨 필터를 이용하여 에지를 검출한다. 검출된 에지는 브러쉬 스트로크 렌더링 시 에지 부분에서 스트로크를 클리핑 함으로써 이미지의 윤곽선 보존을 위해 사용된다. 셋째, 브러쉬 스트로크의 방향을 결정하기 위한 방향맵을 생성한다. 방향맵은 입력 영상에 대한 영역 분할 및 병합을 토대로 만들어진다. 영역별 각 픽셀들에 대해 이미지 그래디언트에 기초한 일정한 방향을 부여함으로써 방향맵을 구성한다. 넷째, 구성된 방향맵을 참조하여 브러쉬 스트로크 생성의 기초가 되는 베지어 곡선(Bezier Curve)의 제어점(Control point)을 설정한다. 실제 회화작품에서 사용되는 브러쉬 스트로크는 일반적으로 곡선의 형태를 이루므로 곡선 표현이 가능한 베지어 곡선을 이용하여 브러쉬 스트로크를 표현하였다. 마지막으로, 생성된 브러쉬 스트로크를 에지부문에서 클리핑하고 배경색을 참조하여 블렌딩하거나 퐁 조명 모델을 이용하여 이미지에 적용하게 된다.
In protein 2-DE image analysis, the accuracy of spot-matching operation which identifies the spot of the same protein in each 2-DE gel image is intensively influenced by the errors caused by the various experimental conditions. This paper proposes an efficient method to find more accurate spot-matching patterns based on multiple reference gel images in spot-matching pattern analysis in protein 2-DE image analysis. Additionally, in order to improve the reduce the execution time which is increased exponentially along with the increasing number of gel images, a "partition then extension" framework is used to find spot-matching pattern of long length and of higher accuracy. In the experiments on real 2-DE images of human liver tissue are used to confirm the accuracy and the efficiency of the proposed algorithm.
Proceedings of the Korea Information Processing Society Conference
/
2023.05a
/
pp.476-478
/
2023
딥러닝은 컴퓨터 비전의 상당한 발전을 기여했지만, 딥러닝 모델을 학습하려면 대규모 데이터 세트가 필요하다. 이를 해결하기 위해 데이터 증강 기술이 주목받고 있다. 본 논문에서는 객체 추출 바운딩 박스와 원본 이미지의 바운딩 박스를 결합하여 합성 데이터 생성기법을 제안한다. 원본 이미지와 동일한 범주의 데이터셋에서 참조 이미지의 객체를 추출한 다음 생성 모델을 사용하여 참조 이미지와 원본 이미지의 특징을 통합하여 새로운 합성 이미지를 만든다. 실험을 통해, 생성 기법을 통한 딥러닝 모델의 성능향상을 보여준다.
Shear-Warp volume rendering has many advantages such as good image Quality and fast rendering speed. However in the interactive classification environment it has low efficiency of memory access since preprocessed classification is unavailable. In this paper we present an algorithm using the spacial locality of memory access in the interactive classification environment. We propose an extension model appending a rotation matrix to the factorization of viewing transformation, it thus performs a scanline-based rendering in the object and image space. We also show causes and solutions of three problems of the proposed algorithm such as inaccurate front-to-back composition, existence of hole, increasing computational cost. This model is efficient due to the spacial locality of memory access.
Proceedings of the Korea Information Processing Society Conference
/
2005.11a
/
pp.513-516
/
2005
단백질 2DE 이미지 분석의 주요작업은 스팟 매칭에 의한 동일한 종류의 단백질 그룹인 패어링 클래스를 구성하는 것으로서 단백질간의 상호 작용, 질병에 관련한 단백질의 변화 등을 관찰할 수 있다. 하지만 2DE 실험의 여러 가지 문제점으로 인하여 패어링 클래스는 먼지, 공기방울 등 에러를 포함하게 되며 이런 에러들은 왜곡된 분석결과를 초래한다. 따라서 본 논문에서는 동일한 조직에서 같은 종류의 단백질은 발현량이 비슷하다는 특성을 이용하여 패어링 클래스의 개개의 스팟을 참조 스팟 속성으로 나눈 값을 유사도로 정의하고, 스팟의 유사도가 사용자에 의하여 선택되는 필터링 배수에 의한 범위를 벗어날 때 에러 스팟으로 간주하여 제거되는 에러 필터링 기법을 제안한다. 실험에서는 정확도(Precision), 재현율(Recall) 및 조화평균(Harmonic-mean) 값을 사용하여 제안된 필터링 기법의 타당성을 보여준다.
As the amount of information increases explosively with the development of society, the need for a digital archive has emerged in order to maintain information efficiently. There is a current standard of digital archive is OAIS(Open Archival Information System) reference model. OAIS reference model is mainly interested in long-term preservation and concerned about comprehensive content. This paper propose digital archive workflow that is used not only for long-term preservation but also for the efficient utilization with the image data. The OAIS reference model and the metadata standard should be added surge information to build a digital archive. Therefore we propose metadata model should be managed based on multi-level classes not only for effective digital image archive but also for utilization.
Proceedings of the Korean Society for Cognitive Science Conference
/
2005.05a
/
pp.228-232
/
2005
최근의 연구에서 Li. Brenner, Cornelissen과 Kim (2002)은 추적 눈 운동 동안의 2차원 모양지각이 망막에 형성된 이미지 내용을 그대로 반영한다는 것을 보여 주었는데, 이러한 연구는 2차원 모양판단에 있어서 눈 운동 정보가 전혀 고려되지 않았음을 시사한다. 이와 같은 실험실 연구와 달리, 실제 생활에서 2차원 모양지각의 왜곡은 대부분의 경우에 발생하지 않는데, 가능한 한 가지 이유는 실험실 연구에서 사용된 자극의 경우에 참조대상이 존재하지 않는데 비하여, 실제 생활에서는 다양한 참조대상이 목표대상의 주변에 존재하기 때문이다. 목표대상과 참조대상의 상대적인 위치관계는 추적 눈 운동 동안에 망막에서도 그대로 유지되는데 시각체계가 이러한 안정적인 관계를 목표 대상의 모양을 지각할 때에 이용할 가능성이 있다. 본 연구에서는 다양한 참조대상을 이용하여 이러한 가능성을 검증하였다. 특히, 피험자의 눈 운동을 눈 운동 측정기를 이용하여 측정하였으며, 적절한 눈 운동을 수행한 시행에서의 데이터만 분석에 사용하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.