Proceedings of the Acoustical Society of Korea Conference
/
1998.06c
/
pp.79-82
/
1998
본 연구에서는 연결단어 음성인식 상에서 올바른 참조 패턴을 생성하기 위해 Levelbuilding 알고리즘을 이용하여 인식대상 단어의 표본 집합(훈련패턴 집합)으로부터 참조 패턴을 자동적으로 생성하는 알고리즘을 개발하였다. 본 연구는 분한 K-Mans 훈련방법에 기초하고 있으며, Levelbuilding 알고리즘을 이용하여 훈련패턴으로부터 참조 패턴을 생성하는 것이다. 먼저 초기화 과정에서 훈련 패턴을 그에 포함된 단어 수만큼 등간격 분리하여 분리된 단어들을 소속 Cluster로 분류하고 각 Cluster의 Center들로 초기 참조패턴을 구성한다. 그리고 참조패턴, 제어정보 및 Levelbuilding 알고리즘을 이용하여 각 훈련패턴을 분리하고, 분리된 단어들을 소속 Cluster로 분류하여 단어 Cluster집합을 구성한 후 DTW 및 minimax알고리즘을 이용해 각 Cluster의 Center를 구하여 참조 패턴을 생성한다. 참조패턴 구성에 변화가 없을 때까지 전 단계의 참조패턴과 본 알고리즘을 반복 수행하여 최적의 참조패턴을 생성한다. 본 알고리즘을 이용하여 3개 숫자의 연결단어 집합으로부터 영('0')에서 구('9')까지 숫자음에 대한 참조패턴을 자동 생성하였다. 참조패턴 생성과정에서 가정 중요한 처리인 훈련패턴 분리과정을 분석하기 위하여 각 반복과정에서 분리된 정보를 그래프로 도시화하여 확인하였다.
Proceedings of the Korean Operations and Management Science Society Conference
/
2006.05a
/
pp.1845-1850
/
2006
적절한 벤치마킹 대상의 선정은 조직 계획 및 통제에 있어 중요한 요소로 인식되고 있으며, 이에 대한 많은 연구가 이루어져 왔다. 특히, 조직의 상대적 성과 평가와 이를 바탕으로 벤치마킹 대상을 결정하는 DEA(data envelopment analysis)의 출현은 벤치마킹에 대한 연구를 증대시켜왔다. 하지만, 벤치마킹 대상 선정은 기술적 생산 가능성 측면 외에도 조직의 정책적 고려, 관리적 우위 그리고 외부 제약 등을 고려해야 한다. 따라서 수리적 결과에 바탕을 둔 기술적 생산 가능성만을 가지고 벤치마킹 대상을 제공하는 현재의 DEA 접근 방법에는 한계가 있다. 즉, 고려하는 모든 대상을 기반으로 한 global efficiency 관점에서 제공하는 해가 비 효율적 조직 입장에서는 바람직하지 않을 수도 있다. 이에 따라 본 연구에서는 local efficiency 개념을 도입하여, 다양한 관점에서 벤치마킹 대안들을 살펴 볼 수 있는 방법을 제공하고자 한다. 이는 다음과 같은 과정에 의해 수행된다. 먼저, DEA를 이용하여 비교하고자 하는 모든 DMU(decision making unit)의 투입/산출물을 바탕으로 각 DMU의 효율성 값과 비효율적 DMU의 참조집합 (reference set)을 도출한다. 다음으로, 도출된 참조집합이 조직 운영 관점에서 적절한 벤치마킹 대상이며, 이러한 목표를 달성할 수 있는가를 평가한다. 이때 도출된 벤치마킹 대상이 적절하다면 분석과정을 종료하고, 적절하지 않을 경우 다음과 같은 추가적인 분석을 수행한다. 우선, 각 참조 집합을 중심으로 DMU를 그룹핑하고, 각 그룹별로 효율성 값 및 참조집합을 도출한다. 이때 도출된 효율성 값이 local efficiency 값에 해당된다. 다음으로, 참조 집합 그룹을 중심으로 도출된 비효율적 DMU의 참조집합이 적절한 벤치마킹 대상인가를 판단한다. 적절한 벤치마킹 대상을 도출하였으면 분석을 종료하고, 그렇지 않을 경우 적절한 벤치마킹 대상을 도출할 때까지 추가적인 분석과정을 반복한다. 제안한 방법을 통하여 조직은 기술적 생산 가능성 외에도 다양한 조직 운영 관점에서 적절한 벤치마킹 대상을 선정할 수 있으며, 이에 따른 목표를 수립할 수 있을 것으로 기대한다. 또한 더 나아가 global efficiency 관점에서 효율적 조직이 되기 위하여 단계적인 벤치마킹 대상 선정과 이에 따른 목표를 수립하는데도 유용하리라 판단된다.
The Transactions of the Korea Information Processing Society
/
v.5
no.11
/
pp.2874-2883
/
1998
프로그램 조각화 기법은 프로그램을 이해하기 쉬운 조각 단위로 분해하여 소프트웨어 개발자나 유지보수다사 프로그램을 쉽게 이해할 수 있도록 지원한는 방법이다. 본 논문ㅇ세는 변수-변수 관련성을 이용하여 정확하고 수행 가능한 프로그램 조각을 추출하는 동적 프로그램 조각 추축 알고리즘을 제안한다. 각 문장에서 변경되는 변수와 참조되는 변수로 나누어서 변수 집합을 계산하고, 선언부에 있는 문장에 대해 변수-변수 관련성을 계산한다. 변수-변수 관련성을 계산할 때는 선언부의 변수가 다른 문장에서 변경되는 변수로 사용된 경우와 참조되는 변수로 사용된 경우를 별도로 조사하여 변경되는 변수 집합은 무조건 관련 집합에 포함시키고, 문장에서 참조되는 변수들은 문장들을 다시 비교하여 기준 변수와 관련된 문장만을 추출하여 관련 집합에 포함시킨다. 제안한 알고리즘은 C 언어를 대상으로 실험한 결과 정확하고 수행 가능한 동적 조각을 추출하였고, 기존의 방법들보다 관련 문자을 찾기 위한 문장의 비교횟수를 평균 42%까지 감소시켰다. 기준 변수가 많을수록 기준 변수와 관련이 없는 변수가 많을수록 문장의 비교 횟수가 현저하게 감소하였다.
In this study, we presented a reference-shot subset method for stable convergence of full waveform inversion using a cyclic-shot subsampling technique. Full waveform inversion needs repetitive modeling of wave propagation and thus its calculation time increases as the number of sources increases. In order to reduce the computation time, we can use a cyclic-shot subsampling method; however, it makes the cost function oscillate in the early stage of the inversion and causes a problem in applying the convergence criteria. We introduced a method in which the cost function is calculated using a fixed reference-shot subset while updating the model parameters using the cyclic-shot subsampling method. Through the examples of full waveform inversion using the Marmousi velocity model, we confirmed that the convergence of cost function becomes stable even under the cyclic-shot subsampling method if using a reference-shot subset.
Proceedings of the Korean Information Science Society Conference
/
2004.04b
/
pp.235-237
/
2004
본 논문은 객체 데이터베이스 속성을 적용하여 데이터베이스 스키마를 생성하고 XML문서를 저장하는 기법을 제안한다 기존의 관계형 데이터베이스는 트리 기반의 XML 문서를 플랫한 테이블에 저장하므로 모델 불일치 문제가 발생한다. 또한, 문서를 검색할 때 고비용의 조인 연산이 필요하다. 하지만 객체 데이터베이스의 집합값 속성과 객체참조 속성은 트리 기반의 IDA 문서를 저장할 때 모델 측면에서 자연스럽다. 집합간 속성과 객체참조 속성은 Uを질의에 자주 사용되는 경로질의 및 순서를 이용하는 질의를 처리할 때게도 유리하다. 본 논문에서는 객체 데이터베이스의 집합값 속성과 객체참조 속성을 이용하여 XML 문서를 저장하기 위한 2가지의 DTD의존적 스키마 설계 기법인 i) 기본 규칙, ii) 인라인 규칙을 제시한다. 다양한 XML 문서에 대해 각각의 규칙에 따른 클래스 수, 저장 공간, 그리고 질의처리 시간을 비교 분석하였다.
Proceedings of the Korea Information Processing Society Conference
/
2017.11a
/
pp.869-872
/
2017
참조 표현이란 영상 내의 특정 물체를 가리키는 자연어 문장을 의미한다. 그리고 이러한 자연어 참조 표현을 기초로, 한 영상에서 실제로 대상 물체의 영역을 찾아내는 일을 참조 표현 이해라고 한다. 본 논문은 참조 표현 이해를 위한 새로운 심층 신경망 모델과 학습 방법을 제안한다. 본 논문에서 제안하는 모델은 효과적인 참조 표현 이래를 위해, 참조 표현에서 언급하는 대상 물체와 보조 물체를 모두 고려할 뿐만 아니라, 두 물체간의 관계정보도 활용한다. 또한, 본 논문에서 제안하는 모델은 이러한 다양한 맥락 정보들을 참조 표현 의존적인 방식으로 가중 결합함으로써, 참조 표현에 부합하는 대상 물체 영역을 보다 정확히 탐지해낼 수 있도록 설계하였다. 본 논문에서는 대규모 참조 표현 데이터 집합인 Google RefExp를 이용한 성능 비교 실험들을 통해, 제안하는 모델의 우수성을 확인하였다.
본 글에서는 일반적인 공간 매니퓰레이터에 관한 가속도 이론을 서술하였다. 즉, 주어진 매 니퓰레이터에 대하여 액튜에이텨 토크집합 T에 대한 치역 $S_t$와 관절변수변화율집합 F에 대한 지역 $S_q$를 정의하였다. 또한 상태공간에서의 한 점 u에서의 상태가속도 집합 $S_u$를 정의하였다. 치역 $S_t$를 결정하고 그 성질인 최대가속도와 동방가속도를 결정하였다. 아울러, 가속도이론의 하나의 적용례로서 정해진 동방기동가속도를 얻을 수 있는 최소한의 액튜에이터 토크의 크기를 결정하는 방법을 도시하였다. 본 결과의 다양한 응용예는 기존연구를 참조하기 바란다.
Journal of the Korea Institute of Information and Communication Engineering
/
v.9
no.1
/
pp.172-180
/
2005
Dynamic slicing method decomposes a program into slices and supports to be understood programs easily by software developer or maintainer. In this paper, we propose dynamic slicing algorithm to reduce time to decompose a program. We produce reference-variable set used in right and modify-variable set used in left on the basis of the assignment operator of all sentences and extract Inter-Variable Relationship(VV) for all variables of variable declaration. Proposed algorithm extracts dynamic slices by using them and execution trace of program. In conclusion, proposed algorithm improved the performance by reducing the time to extract dynamic slices by decreasing average comparison count of sentence when the number of criterion variables is three or more.
Annual Conference on Human and Language Technology
/
2020.10a
/
pp.249-253
/
2020
상호참조해결은 문서 내에 등장하는 모든 멘션 중에서 같은 의미를 갖는 대상(개체)들을 하나의 집합으로 묶어주는 자연어처리 태스크이다. 한국어 상호참조해결의 학습 데이터는 영어권에 비해 적은 양이다. 데이터 증강 기법은 부족한 학습 데이터를 증강하여 기계학습 기반 모델의 성능을 향상시킬 수 있는 방법 중 하나이며, 주로 규칙 기반 데이터 증강 기법이 연구되고 있다. 그러나 규칙 기반으로 데이터를 증강하게 될 경우 규칙 조건을 만족하지 못했을 때 데이터 증강이 힘들다는 문제점과 임의로 단어를 변경 혹은 삭제하는 과정에서 문맥에 영향을 주는 문제점이 발생할 수 있다. 따라서 본 논문에서는 BERT의 MLM(Masked Language Model)을 이용하여 기존 규칙기반 데이터 증강 기법의 문제점을 해결하고 한국어 상호참조해결 데이터를 증강하는 방법을 소개한다. 실험 결과, ETRI 질의응답 도메인 상호참조해결 데이터에서 CoNLL F1 1.39% (TEST) 성능 향상을 보였다.
Kim, Jong-Min;Choe, Jong-Mu;Kim, Je-Seong;Lee, Dong-Hui;No, Sam-Hyeok;Min, Sang-Ryeol;Jo, Yu-Geun;Kim, Jong-Sang
Journal of KIISE:Computer Systems and Theory
/
v.28
no.1_2
/
pp.33-44
/
2001
최근 버퍼 캐쉬의 성능을 향상시키기 위한 많은 블록 교체 기법들이 제안되었으며 이 중에서 작업 집합 (working set) 변화에 잘 적응하고 구현이 용이한 Least Recently Used (LRU) 블록 교체 기법이 널리 사용되고 있다. 그러나 LRU 블록 교체 기법은 블록들이 규칙적인 참조 패턴을 보이면서 순차 참조되거나 순환 참조될 때 이 규칙성을 적절히 이용하지 못해 성능이 저하되는 문제점을 가진다. 본 논문에서는 다중 응용 트레이스를 이용하여 LRU 블록 교체 기법의 문제점을 관찰하고, 이 문제점을 해결하는 통합된 형태의 효율적인 버퍼 관리 (Unified Buffer Management, 이하 UBM) 기법을 제안한다. UBM 기법은 순차 참조 및 순환 참조를 자동 검출하여 분리된 공간에 저장하고 이들 참조에 적합한 블록 교체 기법으로 이 공간을 관리한다. 또한 순차 참조와 순환 참조를 위한 공간과 나머지 참조를 위한 공간의 비율을 최적으로 할당하기 위해 온라인에서 수집된 정보를 이용하여 계산된 단위 공간 증가당 예상 버퍼 적중 증가율을 이용한다. 다중 응용 트레이스 기반 시뮬레이션 실험에서 UBM 기법의 버퍼 적중률은 LRU 블록 교체 기법에 비해 평균 12%, 최대 28%까지 향상된 결과를 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.