• Title/Summary/Keyword: 차폐재료

Search Result 249, Processing Time 0.024 seconds

Development of Shielding using Medical Radiological Contrast Media; Comparison Analysis of Barium Sulfate Iodine Shielding ability by Monte Carlo Simulation (의료방사선 조영제를 이용한 차폐체 개발; 몬테카를로 시뮬레이션을 통한 황산바륨과 요오드의 차폐능 비교분석)

  • Kim, Seon-Chil
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.5
    • /
    • pp.329-334
    • /
    • 2017
  • The purpose of this study is to estimating the possibility of manufacturing radiation shielding sheet by searching for environmentally friendly materials suitable for medical environment of medical radiation shielding. There are many tungsten products which are currently used as shielding materials in place of lead, but there are small problems in the mass production of lightweight shielding sheets due to economical efficiency. To solve these problems, a lightweight, environmentally friendly material with economical efficiency is required. In this study, Barium sulphate and Iodine were proposed. Both materials are already used as contrast medias in radiography, and it is predicted that the shielding effect will be sufficient in a certain region as a shielding material because of the characteristic of absorbing radiation. Therefore, in this study, we used a Monte Carlo simulation to simulate radiation shielding materials. When it is a contrast agent such as Barium sulfate and Iodine, the radiation absorption effect in the high energy region appears greatly, and the effectiveness of the two shielding substance in the energy region of the star with thickness of 120 kVp is also evaluated in the medical radiation imaging region. Simulated estimation results it was possible to estimate the effectiveness of shielding for all two substances. Iodine has higher shielding effect than barium sulfate, 0.05 mm thick appears great effect. Therefore, the Monte Carlo simulation confirms that iodine, which is a radiological contrast agent, is also usable as barium sulfate in the production of radiation shielding sheets.

기체분리용 전도성 폴리아닐린의 복합막 제조

  • 이연근;하성룡;이영무
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1997.10a
    • /
    • pp.75-76
    • /
    • 1997
  • 1. 서론 : 전도성 고분자인 폴리아닐린은 여러 흥미로운 성질을 지니고 있어 많은 연구대상으로 주목받고 있다. 폴리아닐린 필름은 캐스팅이 용이하여 많은 응용을 가져올 것으로 기대된다. 예를 들어 전도성을 부여하는 플라스틱 소자, 전자파 차폐재료 뿐만 아니라 분리용 전도성 고분자막, 의료용 히들로겔 제조 등 이제까지 재료의 제한을 받았던 분야에 응용이 기대되고있다.(생략)

  • PDF

Analysis of Shielding Effectiveness of Low Conductivity Shield Layers within Near-field Region (근거리장에 놓인 저전도율 차폐막의 차폐 효과 분석)

  • Lee, Won-Seon;Lee, Won-Hui;Hur, Jung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.2
    • /
    • pp.59-65
    • /
    • 2019
  • The EMI shielding effectiveness of shielding layers thickness was analyzed when the low conductivity shielding layers was placed in the near field of the noise source. A spiral antenna with broadband characteristics was used as the noise source, and graphite was selected as the low conductivity shielding material. Two spiral antennas were constructed to analyze the transmission coefficient between two antennas, and the distances between the transmitting and receiving antennas were 5 cm and 10 cm. The thickness of the shielding layers was changed from 1 um to 200 um. The frequency was changed from 100 MHz to 6 GHz to obtain a maximum SE(Shielding Effectiveness) of 70 dB. In this simulation, electronic shielding was used due to the nature of graphite, which is a shielding film material. Based on these results, we will study how to improve the shielding performance by implementing magnetic shielding in the future.

Stainless Steel Fiber 충전 PC/ABS 복합재료의 전자파 차폐용 재료로서의 특성

  • 박정민;정성훈;송석규
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 1998.10a
    • /
    • pp.481-484
    • /
    • 1998
  • 전자산업의 급속한 발전과 정보사회로 변화해 감에 따라 각종 전자장비의 사용이 증가하게 되었다. 그러나 전자장비에서 발생하는 전자파에 의한 기기 상호간의 장해현상과 인체에 대한 유해성 등이 새로운 문제로 대두되게 되었다. 이러한 전자파를 효과적으로 차폐하기 위한 하우징 재료를 만들기 위한 여러 가지 노력이 진행되고 있는데 가장 널리 쓰이는 방법은 기존의 재료에 코팅 또는 페인팅 등을 이용하여 전도성 막을 형성시키는 것이나 이는 부가공정에 의한 추가비용, 내구성 등의 문제가 있다. (중략)

  • PDF

Electromagnetic Interference Shielding of Carbon Fibers-Reinforced Composites (탄소섬유강화 복합재료의 전자파 차폐특성)

  • 심환보;서민강;박수진
    • Polymer(Korea)
    • /
    • v.24 no.6
    • /
    • pp.860-868
    • /
    • 2000
  • In this work, the electro-magnetic interference (EMI) characteristics of PAN-based carbon fibers-reinforced composites are investigated with difference to manufactural parameters, i.e., fiber grade, fiber orientation angle, and laminating method. As a result, EMI shielding effectiveness (SE) of the composites greatly depends on a fiber orientation in composite angle. Especially, the fiber grade affects SE of composites in case of orientation angle of 0$^{\circ}$. Then the SE become greater as the change of electric character according to the arrangement directions, i.e., electrical anisotropy in the same constituent materials. This is due to the skin effect which is represented in the surface of electro-magnetic wave in high-frequency range. In all cases according to lamination methods, the composites represents SE of 83~98% over. Whereas, in symmetric and unsymmetric laminate structures, the SE decreases slightly as the laminate angles of composites increases. On the contrary. the repeating laminates structure shows the opposite tendency. Especially, 90$^{\circ}$ repeating laminate structure shows the SE more than 90% over the measuring frequency.

  • PDF

Magnetic Shielding Effect of Amorphous Strips in Low Frequency Field (비정질 연자성재료를 이용한 복층 차폐체의 저주파 자기장 차폐효과)

  • Kim, S.G.;Hur, J.;Park, P.G.;Chung, Y.C.;Kim, Y.B.;Kim, T.K.
    • Journal of the Korean Magnetics Society
    • /
    • v.8 no.6
    • /
    • pp.341-345
    • /
    • 1998
  • Magnetic shielding effect of cylinderical ahields made of commericial amorphous ribbons has been studied. The shell-arrangement-order of double shell shield has been found to show a striking differencein shielding factor. In low applied field region, a 2605CO-2705M-shield (outer shell: 2605CO, inner shell: 2705M) yields two times higher shielding factor than a 2705M-2605CO-shield (outer shell: 2705M, inner shell: 2605CO). The reasons are as follows: In case of 2605CO-2705M-shield, the outer shell is not easily saturated and effectively shields the applied field. In addition, the inner shell shows high shielding factor in the field shielded by the outer shell. In case of 2705M-2605CO-shield, the outer shell is saturated at very low-field as well as the inner shell shows low shielding factor in the field shielded by the outer shell.

  • PDF

Study on the Development of an Outdoor Radiographic Test Shield Using 3D Printer Filament Materials (3D 프린터 필라멘트 재료를 이용한 야외 방사선투과검사용 차폐체 개발을 위한 연구)

  • Mun, Ik-Gi;Shin, Sang-Hwa
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.4
    • /
    • pp.565-572
    • /
    • 2019
  • In this study, shielding analysis of material and thickness of 3D printer filaments was performed for the manufacture of custom shielding by radiation workers during outdoor radiographic test. The shielding was attached to the ICRU Slab Phantom after selecting the voxel source $^{192}Ir$ and $^{75}Se$ through simulation using MCNPX, and the distance between the source and the slab Phantom was set at 100 cm. The 12 shielding materials were divided into 5 mm units up to 200 mm from the absence of shielding materials to evaluate the energy absorbed per unit mass of each shielding material. The results showed that the shielding effect was high in the order of ABS + Tungsten, ABS + Bismuth, PLA + Copper, PLA + Iron from all sources of radiographic test. However, compared to lead, the shielding effect was somewhat lower. Based on this study in the future, further study of the atomic number and the high density filament material is necessary.

Evaluation of the Effectiveness of 3D Printing Shielding Devices using Monte Carlo Simulation in Plain Radiography (일반영상 검사 시 몬테칼로 시뮬레이션을 이용한 3D 프린팅 차폐기구의 효용성 평가)

  • Cho, Yong In;Kim, Jung Hoon
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.3
    • /
    • pp.303-311
    • /
    • 2020
  • Scattering-ray generated during plain radiography can cause secondary exposure to organs and tissues other than the target area. Currently, Shielding devices used to reduce radiation exposure are mostly used for radiation protection of workers, and radiation protection of patients is rarely performed. Therefore, this study intends to evaluate the organ dose by scattered-rays and the effectiveness 3D printing materials as a radiation shielding device during plain radiography through simulation. As a result, the absorbed dose for each organ at the time of examination showed a high effect due to the secondary scattering-ray as the distance from the source was close and the organ closer to the skin surface. The dose reduction effect due to the use of 3D printing shielding devices to protect this showed a higher shielding effect in the case of mixed printing materials compared to plastics.

Evaluation on the Applicability of Heavy Weight Waste Glass as Fine Aggregate of Shielding Concrete (고밀도 폐유리의 차폐 콘크리트 잔골재로의 활용가능성 평가)

  • Choi, So-Yeong;Choi, Yoon-Suk;Won, Min-Sik;Yang, Eun-Ik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.4
    • /
    • pp.101-108
    • /
    • 2015
  • The quantities of heavy weight waste glass have been progressively increased because of the rapid industrialization and the change of quality of life. And, the most of them are not recycled. The heavy weight waste glass have been treated by illegal dumping or being buried in landfills. Meanwhile, in order to ensure the safety of nuclear power plant structure, the excellent construction materials are socially required for shielding performance. Concrete is the most widely used construction material, the huge amounts of natural resources are required to make concrete. So, it is needed to investigate the possibility of recycling of heavy weight waste glass as concrete material ingredient. In this study, the heavy weight waste glass was evaluated for the applicability as fine aggregate of shielding concrete. From the results, when heavy weight waste glass was replaced as fine aggregate of mortar, shielding performance can be improved due to increasing in unit weight of mortar. It showed that the strength decreased according to mixing of heavy weight waste glass, Non-Washed heavy weight waste glass is more advantageous in the strength development than Washed case.