• Title/Summary/Keyword: 차폐성능

Search Result 264, Processing Time 0.024 seconds

Cooling Characteristics and Shielding Effectiveness of hybrid IC (하이브리드 IC의 냉각특성 및 전자차 차폐효과 연구)

  • 김성철
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.2 no.2
    • /
    • pp.49-56
    • /
    • 1995
  • ATM 교환기에 사용되는 하이브리드 IC에 대해 냉각성능과 전자파 차폐성능을 실 험과 수치해석에 의해 분석하였다. 하이브리드 IC 상부에 전자파 차폐를 위해 부착하는 덮 게의 형상에 따라 냉각공기 유속 0.5~0.4m/sec 조건에서 냉각실험을 하였고 냉각 해석 코 드인 Flotherm으로 컴퓨터 시뮬레이션하여 비교하였다. 그리고 각 덮게의 형상에 따라 30MHz ~1GHz 대혁에 걸쳐 전자파 차폐 실험을 하엿다. 실험결과 냉각 특성의 실험과 수 치해석 결과 잘 일치하였으며 공기 유속을 1.0m/sec 이상으로 유지시키면 덮개 형상에 무관 하게 열적으로 안저하였다. 30~700MHz 영역에서는 덮게로 인한 전자파 차폐효과가 뚜렷하 였으나 700MHz 이후의 대역에서는 접지와 접속되는 리이드의 임피던스 증가로 인하여 차 폐효과가 감소하였다.

Evaluation of Shielding Performance of Tungsten Containing 3D Printing Materials for High-energy Electron Radiation Therapy (고에너지 전자선 치료 시 텅스텐 함유 3D 프린팅 물질의 차폐 성능 평가)

  • Yong-In Cho;Jung-Hoon Kim;Sang-Il Bae
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.5
    • /
    • pp.641-649
    • /
    • 2023
  • This study compares and analyzes the performance of a shield manufactured using 3D printing technology to find out its applicability as a shield in high-energy electron beam therapy. Actual measurement and monte carlo simulations were performed to evaluate the shielding performance of 3D printing materials for high-energy electron beams. First, in order to secure reliability for the simulation, a source term evaluation was conducted by referring to the IAEA's TRS-398 recommendation. Second, to analyze the shielding performance of PLA+W (93%), a specimen was manufactured using a 3D printer, and the shielding rate by thickness according to electron beam energy was evaluated. Third, the shielding thickness required for electron beam treatment was calculated through a comparative analysis of shielding performance between PLA+W (93%) and existing shielding bodies. First, as a result of the evaluation of the source term through actual measurement and simulation, the TRS-398 recommendation was satisfied with an error of less than 1%, thereby securing the reliability of the simulation. Second, as a result of the shielding performance analysis for PLA+W (93%), 6 MeV electron beams showed a shielding rate of more than 95% at 3.12 mm, and 15 MeV electron beams showed a shielding rate of more than 90% at 10 mm thickness. Third, through simulations, comparative analysis between PLA+W (93%) materials and existing shields showed high shielding rates within the same thickness in the order of tungsten, lead, copper, PLA+W (93%), and aluminum. 6 MeV electron beams showed almost similar shielding rates at 5 mm or more and 15 MeV electron beams. Through this study in the future, it is judged that it can be used as basic data for the production and application of shielding bodies using PLA+W (93%) materials in high-energy electron beam treatment.

Neutron Shielding Performance of Mortar Containing Synthetic High Polymers and Boron Carbide (합성 고분자 화합물 및 탄화붕소 혼입에 따른 모르타르의 중성자 차폐성능 분석)

  • Min, Ji-Young;Lee, Bin-Na;Lee, Jong-Suk;Lee, Jang-Hwa
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.2
    • /
    • pp.197-204
    • /
    • 2016
  • Concrete walls of neutron generating facilities such as fusion reactors and fission reactors become radioactive by neutron irradiation. Both low-activation and neutron shielding are a critical concern at the dismantling stage after the shutdown of facilities with a requirement of radioactive waste management. To tackle this, two types of additives were investigated in fabricating mortar specimens: synthetic high polymers and boron carbide. It is well known that a hydrogen atom is effective in neutron shielding by an elastic scattering because its mass is almost the same as that of the neutron. And boron is an effective neutron absorber with a big neutron absorption cross section. In this study, the effect of the type, shape, and size of polymers were investigated as well as that of boron carbide. Total 16 mix designs were prepared to reveal the effect of polymers on mechanical properties and neutron shielding performance. The neutron does equivalent of polymers-based mortar for fast neutrons decreased by 36 %, and the count rate of boron carbide-based mortar with regard to thermal neutrons decreased by 90 % compared to conventional mortar. These results showed that a combination of polymers and boron carbide compounds has potential to reduce the thickness of neutron shields as well as radioactive waste from reactors.

전자파 챔버에서의 차폐특성 분석

  • Jang, Jae-Ung;Kim, Tae-Yun;Jang, Gyeong-Deok;Mun, Gwi-Won
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.135.2-135.2
    • /
    • 2012
  • 일반적으로 전자파챔버는 패러데이 케이지(Faraday Cage)라고 불리는 금속재질의 차폐구조물과 구조물 내부에서 발생할 수 있는 전자파의 반사를 억제하는 전파 흡수체로 구성되어 있다. 전자파 환경시험의 무결성을 유지하기 위해서는 챔버 내부에서 발생하는 전자기파가 외부로 나가는 것이 차단되어야 하며 역으로 챔버 외부에서 발생하는 전자기파도 챔버 내부로 유입되지 않도록 전자파챔버 차폐완결성이 유지되어야 한다. 이를 정량적으로 측정함으로서 전자파챔버의 차폐율(Shielding Effectiveness)이 정의될 수 있다. 이상적으로는 전자파챔버의 차폐구조물이 이음새 없이 완벽한 차폐완결성이 유지되어야 하나, 시험품의 이동을 위한 도어 및 외부 EGSE와 시험품간 전기적인 연결을 위한 포트 플레이트의 설치로 인해 완벽한 차폐완결성을 유지하는 것은 불가능하다. 따라서, 본 논문에서는 항공우주연구원에 설치된 전자파챔버의 일반 차폐면, 도어, 포트 플레이트에 대한 차폐율 측정을 통해 차폐율을 정량적으로 검증하였다. 또한, 본 측정 경험과 결과 분석은 전자파 챔버에서 이뤄지는 전자파환경시험의 신뢰성을 증진하고 향후 전자파 챔버 유지보수 및 대형 위성의 전자파 환경시험을 위한 대형 전자파 시험시설의 성능시험을 위해 활용될 수 있을 것이다.

  • PDF

A Study of Block Structures for Improving the Electromagnetic Shielding Properties (전자파 차폐성능 향성을 위한 건축용 블록의 형상 연구)

  • Lim, Gye-Jae
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.5 no.4
    • /
    • pp.175-179
    • /
    • 2012
  • In this paper, we proposed the modified block structures with enhanced electromagnetic shielding properties for mobie communications and ETC frequency bands. As the result of measurement, this block structure with optimized design has the shielding properties of 30 dB, and can be used for electromagnetic safety and EMI.

Evaluation of the Shielding Effect of Polyvinyl Chloride (PVC) on Low-dose Blending Radiation Energy (폴리 염화 비닐(PVC)의 저선량 융합 방사선에너지에 대한 차폐 효과 평가)

  • Kim, Seon-Chil;Cho, Sung-Hyoun
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.12
    • /
    • pp.129-134
    • /
    • 2019
  • PVC was chosen as a plastic product that can cope with lead, a radiation shielding material that is widely used in medical institutions. In addition to radiation shielding clothing, we want to evaluate whether it can be used as a medical device component and industrial shielding material in low dose areas. Commercial PVC has a density of 3.68 g/㎠ and can be positively expected sufficient shielding effect in certain radiation areas such as material flexibility and economy efficiency, and can be transformed into various forms and used as a lightweight shielding wall. The shielding performance was tested by adjusting the thickness of 5 sheets of 3mm PVC in the range of medical radiation used for clinical examination in medical institutions. Shielding performance against effective energy was evaluated based on tube radiation voltage of medical radiation. The thicker the PVC, the lower the tube voltage and the lower the effective energy, the greater the shielding effect. The shielding effect was 70% at 12mm thickness and 80kVp tube voltage. Therefore, the shielding effect of PVC material has a high dependence of thickness. In the future, continuous research is needed to make thin and light eco-friendly products while improving shielding performance.

무전해 구리도금시 폴리에스테르 직물의 표면처리 조건이 전자기파 차폐성능에 미치는 영향

  • 한은경;오경화;김은애
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 1998.10a
    • /
    • pp.497-500
    • /
    • 1998
  • 고분자 물질에 처리하는 전자기파 차폐처리 방법으로서 무전해 도금법은 차폐 처리하고자 하는 매트릭스 표면에 균일한 금속 필름을 형성할 수 있으며 차폐효과가 크고 시료의 형태가 복잡하여도 응용 가능한 가공방법으로 알려져 있다. [1,2] 무전해 구리 도금의 경우, 도금용액 중에 포함되는 환원제의 산화반응에 의해 유리되는 전자에 의하여 금속이온을 환원함으로써 금속 피막을 석출시키며 이때 일어나는 반응 메카니즘은 다음과 같다. [3] (중략)

  • PDF

A Study on Searching Stabled EMI Shielding Effectiveness Measurement Point for Military Communication Shelter Using Support Vector Machine and Process Capability Analysis (서포트 벡터 머신과 공정능력분석을 이용한 군 통신 쉘터의 EMI 차폐효과 안정 포인트 탐색 연구)

  • Ku, Ki-Beom;Kwon, Jae-Wook;Jin, Hong-Sik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.2
    • /
    • pp.321-328
    • /
    • 2019
  • A military shelter for communication and information is necessary to optimize the integrated combat ability of weapon systems in the network centric warfare. Therefore, the military shelter is required for EMI shielding performance. This study examines the stable measurement points for EMI shielding effectiveness of a military shelter for communication and information. The measurement points were found by analyzing the EMI shielding effectiveness measurement data with data mining technique and process capability analysis. First, a support vector machine was used to separate the measurement point that has stable EMI shielding effectiveness according to set condition. Second, this process was conducted with process capability analysis. Finally, the results of data mining technique were compared with those of process capability analysis. As a result, 24 measurement points with stable EMI shielding effectiveness were found.

Experimental Study on the Development of EMP Shielded Concrete Using Industrial By-products (산업부산물을 사용한 EMP차폐 콘크리트 개발에 관한 실험적 연구)

  • Min, Tae-Beom;Kim, Hyeong-Cheol;Choi, Hyun-Kuk;Roh, Jeong-Heon;Kim, Kuk-Joo;Park, Young-Jun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.19 no.6
    • /
    • pp.477-484
    • /
    • 2019
  • The purpose of this study is to present basic data for developing concrete with EMP shielding as the structure materials when constructing an EMP shielded building structure. In order to use metal-based recycled aggregates with excellent conductivity and easy procurement for EMP shielding concrete, an evaluation of the stability evaluation and EMP shielding performance was performed. Through the stability evaluation, it was found that the coarse aggregate stability criterion was satisfied, but the oxidized slag did not satisfy the fine aggregate stability criterion, the oxidized slag is not satisfied. In addition, as a result of fresh concrete, the workability is increased and the air volume is decreased. The compressive strength is increased due to the high density and coarse granularity of the recycled aggregates, which increased the cement paste and adhesion, thereby increasing the compressive strength. The results of an EMP shielding test show that aggregates with high shielding performance are electronic arc furnace(EAF) Oxidizing Slag and Cooper Slag. The shielding performance is expected to increase if the average particle size of aggregate is small or uniformly distributed.

Evaluation of Shielding Performance of 3D Printer Materials for High-energy Electron Radiation Therapy (고 에너지 전자선 치료를 위한 3D 프린터 물질의 차폐 성능평가)

  • Chang-Woo, Oh;Sang-Il, Bae;Young-Min, Moon;Hyun-Kyoung, Yang
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.6
    • /
    • pp.687-695
    • /
    • 2022
  • To find a 3D printer material that can replace lead used as a shield for high-energy electron beam treatment, the shielding composites were simulated by using MCNP6 programs. The Percent Depth Dose (PDD), Flatness, and Symmetry of linear accelerators emitting high-energy electron beams were measured, and the linear accelerator was compared with MCNP6 after simulation, confirming that the source term between the actual measurement and simulation was consistent. By simulating the lead shield, the appropriate thickness of the lead shield capable of shielding 95% or more of the absorbed dose was selected. Based on the absorption dose data for lead shield with a thickness of 3 mm, the shielding performance was analyzed by simulating 1, 5, 10, and 15 mm thicknesses of ABS+W (10%), ABS+Bi (10%), and PLA+Fe (10%). Each prototype was manufactured with a 3D printer, measured and analyzed under the same conditions as in the simulation, and found that when ABS+W (10%) material was formed to have a thickness of at least 10mm, it had a shielding performance that could replace lead with a thickness of 3mm. The surface morphology and atomic composition of the ABS+W (10%) material were evaluated using a scanning electron microscope (SEM) and an energy dispersive X-ray spectrometer (EDS). From these results, it was confirmed that replacing the commercialized lead shield with ABS+W (10%) material not only produces a shielding effect such as lead, but also can be customized to patients using a 3D printer, which can be very useful for high-energy electron beam treatment.