• Title/Summary/Keyword: 차폐선반두께

Search Result 3, Processing Time 0.018 seconds

Validity of Clinically Used Tray Transmission Factor (임상적으로 쓰이는 차폐선반투과율의 타당성에 관한 연구)

  • 윤형근
    • Progress in Medical Physics
    • /
    • v.14 no.4
    • /
    • pp.218-224
    • /
    • 2003
  • Purpose:By evaluating the dependence of the tray transmission factor (tray factor) on collimator setting and tray thickness, we determined the validity of the clinically used single tray factor for standard radiation field size (10${\times}$10 $\textrm{cm}^2$). Methods and Materials:For each X ray energies (6 and 10 MV), outputs were measured by using 5 steps of tray thickness (0, 6, 8, 10, 12 mm) and 7 steps of radiation field size (5${\times}$5, 10${\times}$10, 15${\times}$15, 20${\times}$20, 25${\times}$25, 30${\times}$30, 35${\times}$35 $\textrm{cm}^2$) at 10 cm phantom depth. Outputs were measured in both 'with tray' and 'without tray' conditions by using radiation with the same monitor units, and the tray factors were determined by the ratios of the two outputs. To evaluate the validity of a single tray factor obtained for standard radiation field, we analyzed the pattern of the field sizes in cases treated at our hospital in 2002. Results : In the 6 MV X-ray, the increases in the tray factor between the standard field (l0${\times}$10 $\textrm{cm}^2$) and the largest field (35${\times}$35 $\textrm{cm}^2$) were 0.517%, 0.835%, 1.058%, 1.066% in 6, 8, 10, and 12 mm thickness tray, respectively. In the 10 MV X-ray, the increases in the fray factor between the standard field (10${\times}$10 $\textrm{cm}^2$) and the largest field (35${\times}$35 $\textrm{cm}^2$) were 0.517%, 0.836%, 1.058%, 1.066% in 6, 8, 10, 12 mm thickness tray, respectively. In a major portion of clinical cases, when the field size was smaller than 20${\times}$20 $\textrm{cm}^2$, the tray factor was in good agreement with the standard tray factor. However, in cases where the field sizes were 30${\times}$30 $\textrm{cm}^2$ and 35${\times}$35 $\textrm{cm}^2$, the error could exceed 1.0%. Conclusion:The tray factor increased with increasing field size or decreasing tray thickness. The difference of tray factor between the small field and the large field increased with increasing tray thickness. Furthermore, the standard tray factor was valid in most clinical cases except for when the field size was greater than 30${\times}$30 $\textrm{cm}^2$, wherein the error could exceed 1.0%.

  • PDF

Shielding for Critical Organs and Radiation Exposure Dose Distribution in Patients with High Energy Radiotherapy (고 에너지 방사선치료에서 환자의 피폭선량 분포와 생식선의 차폐)

  • Chu, Sung-Sil;Suh, Chang-Ok;Kim, Gwi-Eon
    • Journal of Radiation Protection and Research
    • /
    • v.27 no.1
    • /
    • pp.1-10
    • /
    • 2002
  • High energy photon beams from medical linear accelerators produce large scattered radiation by various components of the treatment head, collimator and walls or objects in the treatment room including the patient. These scattered radiation do not provide therapeutic dose and are considered a hazard from the radiation safety perspective. Scattered dose of therapeutic high energy radiation beams are contributed significant unwanted dose to the patient. ICRP take the position that a dose of 500mGy may cause abortion at any stage of pregnancy and that radiation detriment to the fetus includes risk of mental retardation with a possible threshold in the dose response relationship around 100 mGy for the gestational period. The ICRP principle of as low as reasonably achievable (ALARA) was recommended for protection of occupation upon the linear no-threshold dose response hypothesis for cancer induction. We suggest this ALARA principle be applied to the fetus and testicle in therapeutic treatment. Radiation dose outside a photon treatment filed is mostly due to scattered photons. This scattered dose is a function of the distance from the beam edge, treatment geometry, primary photon energy, and depth in the patient. The need for effective shielding of the fetus and testicle is reinforced when young patients ate treated with external beam radiation therapy and then shielding designed to reduce the scattered photon dose to normal organs have to considered. Irradiation was performed in phantom using high energy photon beams produced by a Varian 2100C/D medical linear accelerator (Varian Oncology Systems, Palo Alto, CA) located at the Yonsei Cancer Center. The composite phantom used was comprised of a commercially available anthropomorphic Rando phantom (Phantom Laboratory Inc., Salem, YN) and a rectangular solid polystyrene phantom of dimensions $30cm{\times}30cm{\times}20cm$. the anthropomorphic Rando phantom represents an average man made from tissue equivalent materials that is transected into transverse 36 slices of 2.5cm thickness. Photon dose was measured using a Capintec PR-06C ionization chamber with Capintec 192 electrometer (Capintec Inc., Ramsey, NJ), TLD( VICTOREEN 5000. LiF) and film dosimetry V-Omat, Kodak). In case of fetus, the dosimeter was placed at a depth of loom in this phantom at 100cm source to axis distance and located centrally 15cm from the inferior edge of the $30cm{\times}30cm^2$ x-ray beam irradiating the Rando phantom chest wall. A acryl bridge of size $40cm{\times}40cm^2$ and a clear space of about 20 cm was fabricated and placed on top of the rectangular polystyrene phantom representing the abdomen of the patient. The leaf pot for testicle shielding was made as various shape, sizes, thickness and supporting stand. The scattered photon with and without shielding were measured at the representative position of the fetus and testicle. Measurement of radiation scattered dose outside fields and critical organs, like fetus position and testicle region, from chest or pelvic irradiation by large fie]d of high energy radiation beam was performed using an ionization chamber and film dosimetry. The scattered doses outside field were measured 5 - 10% of maximum doses in fields and exponentially decrease from field margins. The scattered photon dose received the fetus and testicle from thorax field irradiation was measured about 1 mGy/Gy of photon treatment dose. Shielding construction to reduce this scattered dose was investigated using lead sheet and blocks. Lead pot shield for testicle reduced the scatter dose under 10 mGy when photon beam of 60 Gy was irradiated in abdomen region. The scattered photon dose is reduced when the lead shield was used while the no significant reduction of scattered photon dose was observed and 2-3 mm lead sheets refuted the skin dose under 80% and almost electron contamination. The results indicate that it was possible to improve shielding to reduce scattered photon for fetus and testicle when a young patients were treated with a high energy photon beam.

Carbon Fiber as Material for Radiation Fixation on Device : A comparative study with acrylic (고정기구 재질로써 탄소 섬유와 아크릴의 방사선량 감쇄 영향 비교)

  • Chie, Eui-Kyu;Park, Jang-Pil;Huh, Soon-Nyung;Hong, Se-Mie;Park, Suk-Won;Kim, In-Ah;Wu, Hong-Gyun;Kim, Jae-Sung;Kang, Wee-Saing;Kim, Il-Han;Ha, Sung-Whan;Park, Charn-Il
    • Journal of Radiation Protection and Research
    • /
    • v.30 no.1
    • /
    • pp.1-7
    • /
    • 2005
  • Radiation absorption parameters of carbon fiber panel were measured in comparison to acrylic panel. $30{\times}30cm$ sized 2mm thick carbon fiber panel and identical sized 6mm thick acrylic panel were placed in tray holder position and 0cm, 5cm, 10cm from surface of phantom. Radiation field size was $10{\times}10cm$. 50MU of 4MV photon was irradiated to the phantom with dose rate of 300MU/min. Source-to-phantom distance was 120cm. Radiation dose was measured with 0.6cc Farmer-type ionization chamber with 1cm build-up. Measurement was repeated thrice and normalization was done to the dose of the open field. Radiation transmission rate of carbon fiber panel is approximately 1% lower than acrylic panel of equivalent thickness. However, considering the strength of the material, transmission rate is higher for carbon fiber panel. Although carbon fiber panel increases the radiation dose when attached to the surface for about 2%, it normalizes the radiation dose to 97-99% of irradiated dose which could have been lowered to as much as 5-7.5% with acrylic panel. As carbon fiber panel is stronger than acrylic panel, radiation fixation device could be made thinner and thus lighter and furthermore, with increased radiation transmission. This in turn makes carbon fiber more ideal material for radiation fixation device over conventionally used acrylic.