• Title/Summary/Keyword: 차폐벽

Search Result 51, Processing Time 0.025 seconds

A Study on the Mining Method for Limestone Mines with Less Environmental Hazards (환경오염 저감을 위한 석회석 광산개발방안에 대한 연구)

  • 임한욱;김재동;백환조
    • Tunnel and Underground Space
    • /
    • v.10 no.1
    • /
    • pp.80-91
    • /
    • 2000
  • Open cut mining of limestone is generally considered to be more advantageous than underground mining in recovery, grade control, economics, and safety, but it causes substantial environmental pollutants such as ground vibration, noise, dust. It also changes ground surface and may destroy vegetation. The Halla limestone mine which lies adjacent to Baikdu mountains range is selected for a model study. To reduce environmental hazards, and to conserve original surface and woods, both open cut and underground mining methods must be adopted. In case of sub-level sloping. a unit block of 87m high, 70m wide, and 100∼l20m long is suggested with an estimated overall recovery of 42%. Some suggestions to reduce the environmental hazards are also included. The followings must be considered in determining the degree of fragmentation; the discontinuity conditions in the rock mass and the charge concentration both at the bottom and column of the hole. In addition to adopting a barrier wall for reducing environmental hazards, the probable production from underground mining is also discussed.

  • PDF

Activation Evaluation of Radiation Shield Wall (Concrete) in Cyclotron room using the Portable Nclide Analyzer Running Title: Activation Evaluation of Concrete in Cyclotron room (휴대용 핵종분석기를 활용한 사이클로트론실 내 차폐벽 방사화 평가)

  • Kim, Seongcheol;Gwon, Da Yeong;Jeon, Yeoryeong;Han, Jiyoung;Kim, Yongmin
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.25 no.2
    • /
    • pp.41-47
    • /
    • 2021
  • Purpose There are many cyclotrons compared to the land area of the Republic of Korea. Because GMP certification is required and the nuclear medicine test does not apply for insurance, the number of examinations for nuclear medicine is decreasing. Therefore, there is a high probability of early decommissioning of the cyclotron. However, we do not unusually perform the radioactivation evaluation on concrete that can be classified as radioactive waste during the decommissioning of the cyclotron. In this study, we aim to confirm the radioactivation in the concrete surface using Handheld Radionuclide Identification Devices (RIDs). Materials and Methods Because there is no cyclotron being decommissioning in the Republic of Korea, it was impossible to perform the coring of concrete for radioactivation analysis. In this study, we used the KIRAMS-13 and analyzed the concrete surface in the target direction in the cyclotron room. After setting the target direction as the center, radionuclides were measured for about five months at thirty points with vertical and horizontal intervals of 30 cm. We used the RIIDEye(Detector: NaI(Tl) detector, manufacturer: Thermo) in this study and set the measurement time per point to one day (24 hours). Results Co-60 and Cs-137 were detected in some measurement points, and we confirmed the radioactivity of Co-60 detected at the most points. As a result, we found that the radioactivity of Co-60 was high in the diagonal direction (from the lower-left direction to the upper right direction) based on the center of the target. However, we think it is impossible to apply the corresponding results to all cyclotrons because we performed the study using only one cyclotron. Conclusion In thirty measurement points, we could confirm the radioactive nuclides and the relative radioactivity using the results of portable nuclides analyzer. Therefore, we expect that we can use the portable nuclides analyzer to select the coring position of concrete during the decommissioning of the cyclotron. Also, if we secure the radioactivation data for several years, we expect to make a more accurate estimate of radioactive waste during the preparation period of decommissioning of the cyclotron.

The consideration about the shielding effect of LEDITE (LEDITE를 이용한 방사선 차폐시설에 관한 고찰)

  • Min Je-soon;Lee Je-hee;Park heung-deuk
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.15 no.1
    • /
    • pp.11-18
    • /
    • 2003
  • The concrete is usually used to build a radiation therapy facility and the enough concrete thickness for high energy x-ray beam is about 1 meter. But if the space is not enough to build a radiation therapy facility with concrete, the substitute for concrete is needed, and the Ledite can be a good substitute for concrete. In this study, we compared the Ledite with the concrete. The comparing list are the needed shielding thickness, the period of construction and the cost.

  • PDF

차폐팩커(protection packer)를 이용한 지하수 심정의 역주입 상향식 그라우팅 방법 연구

  • 조희남;임승태
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.106-109
    • /
    • 2004
  • 지표하부 상층 오염지하수의 침투로 인한 암반 지하수의 오염을 방지하기 위하여 지하수 개발과정에서 반드시 지표하부 지하수 오염방지를 이행하도록 지하수법에 규정하고 있다. 널리 알려진 지표하부 오염방지 공법으로서는 팩카그라우팅 공법(packer Grouting Method), 트레미공법(Tremie Method)과 브레든 헤드 공법(Bradenhead Method)이 있다. 그러나, 현재 대다수의 지하수 개발 현장에서는 단순히 강관을 굴착공에 억지박음함으로써 지표하부 오염방지에 가름하는 사례가 다반사이며 깊은 심도의 경우에도 종래 공법으로는 한계를 가질 수밖에 없는 실정이었다. 따라서, 본 연구에서는 차폐 팩카(Protection Packer)를 이용하여 고, 저심도의 어느 지하수 심정에서나 용이하게 역주입 상향그라우팅이 가능한 여건이 될 수 있도록 시공 사례를 통해 연구를 수행하였다.

  • PDF

Dose-Rates Evaluation on a Reinforced Hot Cell facility (핫셀시설의 방사선 안전성 평가)

  • 조일제;국동학;구정회;정원명;유길성;이은표;박성원
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2003.11a
    • /
    • pp.584-589
    • /
    • 2003
  • The hot cell facility which is designed to permit safe handling of source materials with radioactivity levels up to 1,385 TBq, is planned to be built. To meet this goal, the facility is designed to keep gamma and neutron radiation lower than the recommended dose-rate in normally occupied areas. The calculations performed with QAD-CGGP and MCNP-4C are used to evaluate the proposed engineering design concepts that would provide acceptable dose-rates during a normal operation in hot cell facility. The maximum effective gamma dose-rates on the surfaces of the facility at operation area and at service area calculated by QAD-CGGP are estimated to be $2.10{\times}10^{-3}$, $2.97{\times}10^{-2}$ and $1.01{\times}10^{-1}$ mSv/h, respectively. And those calculated by MCNP-4C are $1.60{\times}10^{-3}$, $2.99{\times}10^{-3}$ and $7.88{\times}10^{-2}$ mSv/h, respectively The dose-rates contributed by neutrons are one order of magnitude less than that of gamma sources, and penetration and toboggan will be partly reinforced by lead shield.

  • PDF

Evaluation of the Shielding Effect of Polyvinyl Chloride (PVC) on Low-dose Blending Radiation Energy (폴리 염화 비닐(PVC)의 저선량 융합 방사선에너지에 대한 차폐 효과 평가)

  • Kim, Seon-Chil;Cho, Sung-Hyoun
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.12
    • /
    • pp.129-134
    • /
    • 2019
  • PVC was chosen as a plastic product that can cope with lead, a radiation shielding material that is widely used in medical institutions. In addition to radiation shielding clothing, we want to evaluate whether it can be used as a medical device component and industrial shielding material in low dose areas. Commercial PVC has a density of 3.68 g/㎠ and can be positively expected sufficient shielding effect in certain radiation areas such as material flexibility and economy efficiency, and can be transformed into various forms and used as a lightweight shielding wall. The shielding performance was tested by adjusting the thickness of 5 sheets of 3mm PVC in the range of medical radiation used for clinical examination in medical institutions. Shielding performance against effective energy was evaluated based on tube radiation voltage of medical radiation. The thicker the PVC, the lower the tube voltage and the lower the effective energy, the greater the shielding effect. The shielding effect was 70% at 12mm thickness and 80kVp tube voltage. Therefore, the shielding effect of PVC material has a high dependence of thickness. In the future, continuous research is needed to make thin and light eco-friendly products while improving shielding performance.

A Study on Permittivity of Multi-walled Carbon nanotube/Epoxy Composites (다중벽 탄소나노튜브/에폭시 복합재료의 유전율에 관한 연구)

  • 이상의;박기연;김천곤;한재흥
    • Composites Research
    • /
    • v.17 no.3
    • /
    • pp.38-44
    • /
    • 2004
  • The electromagnetic interference (EMI) shielding is very essential for commercial and military purposes. We fabricated multi-walled carbon nanotube (MWNT)/epoxy composites and studied the electromagnetic characteristics of the composites before we study the characteristics of MWNT-added glass fiber-reinforced composites. After setting up the fabrication process, we measured the permittivity of MWNT/epoxy composites with process variables and MWNT concentrations in X-band (8.2GHz~12.4GHz). We also observed re-aggregation phenomenon of MWNTs and investigated its effect on the permittivity. The permittivity of the composites was influenced by the degree of dispersion of MWNTs and increased almost linearly as MWNT concentration increases.

Radioactivation Analysis of Concrete Shielding Wall of Cyclotron Room Using Monte Carlo Simulation (PET 사이클로트론 가동에 따른 콘크리트 차폐벽의 방사화)

  • Jang, Donggun;Lee, Dongyeon;Kim, Junghoon
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.5
    • /
    • pp.335-341
    • /
    • 2017
  • Cyclotron is a device that accelerates positrons or neutrons, and is used as a facility for making radioactive drugs having short half-lives. Such radioactive drugs are used for positron emission tomography (PET), which is a medical apparatus. In order to make radioactive drugs from a cyclotron, a nuclear reaction must occur between accelerated positrons and a target. After the reaction, unncessary neutrons are produced. In the present study, radioactivation generated from the collisions between the concrete shielding wall and the positrons and neutrons produced from the cyclotron is investigated. We tracked radioactivated radioactive isotopes by conducting experiments using FLUKA, a type of Monte Carlo simulation. The properties of the concrete shielding wall were comparatively analyzed using materials containing impurities at ppm level and materials that do not contain impurities. The generated radioactivated nuclear species were comparatively analyzed based on the exposure dose affecting human body as a criterion, through RESRAD-Build. The results of experiments showed that the material containing impurities produced a total of 14 radioactive isotopes, and $^{60}Co$(72.50%), $^{134}Cs$(16.75%), $^{54}Mn$(5.60%), $^{152}Eu$(4.08%), $^{154}Eu$(1.07%) accounted for 99.9% of the total dose according to the analysis having the exposure dose affecting human body as criterion. The $^{60}Co$ nuclear species showed the greatest risk of radiation exposure. The material that did not contain impurities produced a total of five nuclear species. Among the five nuclear species, 54Mn accounted for 99.9% of the exposure dose. There is a possibility that Cobalt can be generated by inducive nuclear reaction of positrons through the radioactivation process of $^{56}Fe$ instead of impurities. However, there was no radioactivation because only few positrons reached the concrete wall. The results of comparative analysis on exposure dose with respect to the presence of impurities indicated that the presence of impurities caused approximately 98% higher exposure dose. From this result, the main cause of radioactivation was identified as the small ppm-level amount of impurities.

The Evaluation of Radiation Dose to Embryo/Fetus and the Design of Shielding in the Treatment of Brain Tumors (임산부의 전뇌 방사선 치료에 있어서의 태아의 방사선량 측정 및 차폐 구조의 설계)

  • Cho, Woong;Huh, Soon-Nyung;Chie, Eui-Kyu;Ha, Sung-Whan;Park, Yang-Gyun;Park, Jong-Min;Park, Suk-Won
    • Journal of Radiation Protection and Research
    • /
    • v.31 no.4
    • /
    • pp.203-210
    • /
    • 2006
  • Purpose : To estimate the dose to the embryo/fetus of a pregnant patient with brain tumors, and to design an shielding device to keep the embryo/fetus dose under acceptable levels Materials and Methods : A shielding wall with the dimension of 1.55 m height, 0.9 m width, and 30 m thickness is fabricated with 4 trolleys under the wall. It is placed between a Patient and the treatment head of a linear accelerator to attenuate the leakage radiation effectively from the treatment head, and is placed 1 cm below the lower margin of the treatment field in order to minimize the dose to a patient from the treatment head. An anti-patient scattering neck supporters with 2 cm thick Cerrobend metal is designed to minimize the scattered radiation from the treatment fields, and it is divided into 2 section. They are installed around the patient neck by attach from right and left sides. A shielding bridge for anti-room scattered radiation is utilized to place 2 sheets of 3 mm lead plates above the abdomen to setup three detectors under the lead sheets. Humanoid phantom is irradiated with the same treatment parameters, and with and without shielding devices using TLD, and ionization chambers with and without a build-up cap. Results : The dose to the embryo/fetus without shielding was 3.20, 3.21, 1.44, 0.90 cGy at off-field distances of 30, 40, 50, and 60 cm. With shielding, the dose to embryo/fetus was reduced to 0.88, 0.60, 0.35, 0.25 cGy, and the ratio of the shielding effect varied from 70% to 80%. TLD results were 1.8, 1.2, 0.8, 1.2, and 0.8 cGy. The dose measured by the survey meter was 10.9 mR/h at the patient's surface of abdomen. The dose to the embryo/fetus was estimated to be about 1 cGy during the entire treatment. Conclusion : According to the AAPM Report No 50 regarding the dose limit of the embryo/fetus during the pregnancy, the dose to the embryo/fetus with little risk is less than 5 cGy. Our measurements satisfy the recommended values. Our shielding technique was proven to be acceptable.

Analysis and Suppression of Parasitic Resonance in Millimeter-wave Ceramic Packages (밀리미터파용 세라믹 패키지에서의 기생공진 해석 및 억제 방법)

  • Seo, Jae-Ok;Kim, Jin-Ryang;Lee, Hae-Yeong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.39 no.2
    • /
    • pp.101-107
    • /
    • 2002
  • High performance packages must protect circuits from the internal leakaged-electromagnetic fields as well as the surrounding. In this paper, we characterized an electromagnetically-shielded millimeter-wave ceramic package from 20 to 40 ㎓ using FEM(Finite Element Method). From these calculation results, the parasitic resonance is observed at 33.4 ㎓. We use metal-filled via-holes at the ceramic package walls and resonance has been suppressed in a frequency range from 20 to 40 ㎓. These calculation results will be helpful for MMIC packaging using electromagnetically-shielded millimeter-wave ceramic packages.