• Title/Summary/Keyword: 차축하중

Search Result 21, Processing Time 0.023 seconds

Behavior of Asphalt Pavement Subjected to a Moving Vehicle I: The Effect of Vehicle Speed, Axle-weight, and Tire Inflation Pressure (이동하중에 의한 시험도로 아스팔트 포장의 거동 분석)

  • Seo, Young Gook;Lee, Kwang-Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5D
    • /
    • pp.831-838
    • /
    • 2006
  • An experimental/analytic study has been conducted to understand the adverse effects of low vehicle speed, high axle load and high tire pressure on the performance of asphalt pavements. Of 33 asphalt sections at KHC test road, two sections having different base layer thickness (180 mm versus 280 mm) are adopted for rollover tests. During the test, a standard three-axle dump truck maintains a steady state condition as moving along the wheel path of a passing lane, and lateral offsets and real travel speed are measured with a laser-based wandering system. Test results suggest that vehicle speed affects both longitudinal and transverse strains at the bottom of asphalt layer (290 mm and 390 mm below the surface), and even slightly influences the measured vertical stresses at the top of subbase and subgrade due to the dynamic effect of rolling vehicle. Since the anisotropic nature of asphalt-aggregate mixtures, the difference between longitudinal and transverse strains appears prominent throughout the measurements. As the thickness of asphalt pavement increases, the measured lateral strains become larger than its corresponding longitudinal strains. Over the limited testing conditions, it is concluded that higher axle weight and higher tire pressures induce more strains and vertical stresses, leading to a premature deterioration of pavements. Finally, a layered elastic analysis overestimates the maximum strains measured under the 1st axle load, while underestimating the maximum vertical stress in both pavement sections.

A Study on Efficient Rolling Stock HBD Monitoring Method Using EWMA Technique (EWMA 기법을 적용한 효율적 철도차량 차축온도검지 모니터링 방법 연구)

  • Choi, Seog-Jung;Kim, Moon-Hong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.1
    • /
    • pp.609-617
    • /
    • 2017
  • Railways are one of the safest and most important transportation systems in the world. On the other hand, due to the increasing complexity of the railway system and the running distance of rail vehicles, railway accidents occur continuously every year. In particular, in the case of high-speed trains and freight trains, if the function of the axle bearing is lost due to abnormal overheating of the axle box bearing, the load on the axle becomes uneven. Therefore, abnormal overheating in the train axle box bearings can cause serious accidents or derailments. For this purpose, a Hot Box Detector (HBD) was installed in the track side of a high speed line to detect abnormal overheating. This paper proposes an EWMA technique-based axle temperature monitoring method to detect abnormal overheating quickly and efficiently. A statistical design of the proposed method was also performed. The proposed method has better performance compared to the current method in the case of abnormal overheating and the performance is improved by approximately 170% at the maximum.

Weight Reduction of an Urban Railway Axle Based on EN Standard (EN 규격에 기반한 도시철도차량 차축의 경량화)

  • Han, Soon-Woo;Son, Seung-Wan;Jung, Hyun-Seung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.5
    • /
    • pp.579-590
    • /
    • 2012
  • Weight reduction of a railway axle, which is one of heaviest parts in an urban railway vehicle, is discussed in this paper. A wheelset of a railway vehicle is very important with regard to railway safety, and its structural strength should always be considered when attempting to reduce the railway axle weight. In this work, the weight of the axles of a trailer bogie and a motor bogie of the Korean EMU was reduced by replacing solid axles with hollow axles. On the basis of the EN standard for railway axle design, the strength of existing solid axles was analyzed and the required bore size of a hollow axle was determined. It is shown that the weight of the concurrent axle of the Korean EMU can be reduced by up to 20% with a very small decrease in the structural strength. Finite element analyses were also carried out to verify the design result for lightweight hollow axles.

Estimation of Moving Loads by Measuring Dynamic Response (동적 거동계측을 통한 이동하중 추정)

  • Cho, Jae Yong;Shin, Soobong;Choi, Kwang-Kyu;Kwon, Soon-Jung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.4
    • /
    • pp.129-137
    • /
    • 2007
  • An algorithm is proposed for estimating axle loads of trucks moving over a bridge by measuring dynamic responses. The bridge was modeled by a beam structure in the current applications of the proposed algorithm. Among the state vectors, measured acceleration was used and displacement was computed from measured strain at the same location. Nodal force vectors were computed by using a ready-made database of equivalent nodal force transformation matrix. The algorithm was examined through simulation studies and laboratory experiments. The effects of measurement noise and velocity error were investigated through simulation studies.

Effects of Tread, Wheelbase and Axle Load Distribution on Tractor Vibrations (윤거, 축거, 차축 하중 분포가 트랙터 진동에 미치는 영향)

  • 조춘환;김경욱
    • Journal of Biosystems Engineering
    • /
    • v.21 no.3
    • /
    • pp.293-305
    • /
    • 1996
  • Effects on the tractor vibrations of tread, wheelbase and axle load distribution were analyzed by using mathematical models of tractor and random road surface. A 4 degrees of freedom tractor model was developed to predict the bounce, pitch and roll motions of tractor. The front axle which is constrained to roll with respect to tractor body was also included in the model. A random road profile was generated and used as an excitation input to the tractor. Output vibrations of the model were predicted and analyzed by a computer simulation method. In general, longer tread tends to reduce rolling and longer wheelbase does bouncing and pitching motions. Tractor vibrations were minimum when the ratio of front to rear axle loads was in the range of 30:70-35:65. Sensitivity analysis showed that rolling and pitching motions most sensitively varied with changes in tread and wheelbase while bouncing motion did with the location of mass center.

  • PDF

차량하중에 의한 대차의 안전성 평가에 관한 연구

  • 윤성철;이강원;김원경;홍용기
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.95-95
    • /
    • 2004
  • 철도차량용 주행장치인 대차는 차체의 하중을 지지하고, 승객 및 차량의 안전, 주행성능 및 승차감에 지대한 영향을 미치는 핵심 구조부품이다. 주행장치는 크게 대차틀, 차륜 및 차축, 1차 2차 현가장치, 제동장치, 전동기 및 동력전달장치 등으로 구성되며, 대차틀은 형상이 복잡하고 하중을 직접 지지할 뿐만 아니라 하중조건도 정적 및 동적하중이 복합적으로 작용하고 있다. 대차틀은 차체 자중 및 승객 하중에 의한 정하중과 곡선주행, 제동시 발생하는 하중 및 불규칙한 선로와 차체, 주행장치, 윤축의 운동모드에 의한 동하중을 받고 있다.(중략)

  • PDF

Introduction to design of automobile braking system (자동차 제동장치의 설계입문)

  • 지경택
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.4 no.1
    • /
    • pp.5-19
    • /
    • 1982
  • 차량에 있어서 제동장치가 차지하는 중요도는 다른 부품에 비하여 매우 크다고 말할 수 있겠다. 그래서 차량 brake system을 적용하는데 있어서 가장 기초가 되는 수식 및 일반사항을 설명 함으로써 차량과 brake 관계를 넓게 이해하고 가장 적합한 제동장치의 설계에 도움을 주려는 데 본 기술의 목적이 있다. 우선 차량제원에 맞는 brake 성능에 관하여 생각하여 보자. 2개의 차 축을 갖고 있는 차량에서 제동할 경우 전 후 차축(front axle, rear axle)의 동하중(dynamic weight)은 정지상태 때의 하중과는 달라지게 된다. 그러므로 brake 성능은 이 동하중의 분배에 좌우되는 것이다.

  • PDF

Study on Structural Analysis of Front Axle (전방 차축의 구조해석에 관한 연구)

  • Han, Moon-Sik;Cho, Jae-Ung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.5
    • /
    • pp.65-71
    • /
    • 2011
  • This study analyzes about front axle through the analyses of stress, fatigue and vibration. Maximum equivalent stress is shown with the frequency of 60Hz in case of the harmonic vibration analysis applied with force. Among the cases of nonuniform fatigue loads, 'SAE bracket history' with the severest change of load becomes most unstable but 'Sample history' becomes most stable. In case of 'Sample history' with the average stress of 0 to $-2{\times}10^5MPa$ and the amplitude stress of 0 to $-2{\times}10^5MPa$, the possibility of maximum damage becomes 3%. This stress state can be shown with 6 times more than the damage possibility of 'SAE Bracket history' or 'SAE transmission'. The structural result of this study can be effectively utilized with the design of front axle by investigating prevention and durability against its damage.

A Study on the contact force calculation by bending load of axle of rolling stocks (철도차량 차축의 굽힘하중에 의한 차륜/레일 접촉력 계산에 관한 연구)

  • Ham, Young-Sam
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.481-484
    • /
    • 2008
  • The important factor to evaluate the running safety of a railway vehicle would be the interaction force between wheel and rail(derailment coefficient), for which is one of important factors to check the running safety of a railway vehicle that may cause a tragic accident. Element that analyze derailment coefficient is consisted of wheel load and lateral force. In this paper, studied about method that calculate vertical force(wheel load) by bending load of axle in rolling stocks.

  • PDF

A Convergent Study on the Structural Analysis of Automotive Support Beam (자동차 서포트빔의 구조해석에 대한 융합 연구)

  • Choi, Kye-Kwang;Cho, Jae-Ung
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.9
    • /
    • pp.169-173
    • /
    • 2020
  • The structural analysis was performed at this study when the axle was loaded by using a total of three automotive support beam models, models A, B and C. Comparing with three models A, B, and C, the equivalent stress is considered to be good for its durability because model C is less than the yield stress of the material. The maximum equivalent stresses happening at models A and B are 1.8 times and 2.5 times higher than the yield stress, respectively, indicating that the material is fractured. So, it does not seem to be efficient as a support beam. Model C can be applied efficiently to the improvement design of axle support beams in terms of durability compared to models A and B. The strength of automotive support beam can be evaluated by applying this research result to the automotive part. And it is seen that this study is adequate at the efficient design and aesthetic convergence practically.