• Title/Summary/Keyword: 차세대고속열차

Search Result 62, Processing Time 0.02 seconds

An Evaluation on Derailment according to Running Safety of Next-Generation High Speed Train (HEMU-430X) (차세대 고속열차(HEMU-430X)의 주행 안전에 따른 탈선평가)

  • Sim, Kyung-Seok;Park, Tae-Won;Lee, Jin-Hee;Jeong, Gi-Beom
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.4
    • /
    • pp.343-351
    • /
    • 2012
  • With the cooperation of many research institutes and railway companies, the next generation high speed train is under development for many years. To confirm the safety requirement of the developed high speed train, multibody dynamic analysis is implemented. Through this analysis, railway derailment and lateral guiding force simulation was evaluated according to UIC code 518 OR for international railway vehicle. Test results were compared by limit value of safety criteria. Safety evaluation results, according to international standards, would provide basic reference data of ensuring safety speed and track radius curve. The safety of the train at the maximum speed is verified by numerical analysis results.

Safety Evaluation of the Dynamic Behavior of HEMU-430X using the Accelerometers of UIC 518 OR (UIC 518 OR의 가속도계를 이용한 차세대고속열차(HEMU-430X) 동적 거동 안전성 평가)

  • Ryu, Sang-Hyun;Kim, Sang-Soo;Hong, June-Hee;Song, Doo-Sang;Guo, Yang-Yang
    • Journal of the Korean Society for Railway
    • /
    • v.16 no.1
    • /
    • pp.32-39
    • /
    • 2013
  • The next generation high-speed train(HEMU-430X) is Korea's first electric multiple unit type, high speed vehicle resulting from a national R&D project. Tests have been conducted on the Kyungbu High Speed Line running at speeds up to 354.64km/h, and analysis of the dynamic behavior of the train was carried out to evaluate its safety. In this study, a simplified method using an accelerometer(the method specified in UIC 518 OR) was chosen to analyze the safety of the train's dynamic behavior. The section chosen for analysis section was ${\pm}10{\sim}20km/h$ with respect to the maximum speed point. In addition, we analyzed the trend of this dynamic behavior with increasing speed by comparing the analyzed values with those of UIC 518 OR. The dynamic behavior results met the limit values of UIC 518 OR and the study indicates that this trend is predicted to continue at speeds above 354km/h.

Study on Fault Diagnosis Method of Train Communication Network applied to the prototype Korean High Speed Train (한국형 고속 전철에 적용된 열차 통신 네트워크의 고장 진단 기법에 관한 연구)

  • Cho, Chang-Hee;Park, Min-Kook;Kwon, Soon-Man;Kim, Yong-Ju;Kim, Sung-Shin
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.1335-1337
    • /
    • 2003
  • 한국형 고속 전철 과제는 6년의 과제 기간을 가시는 국가 연구 사업으로, 한국 실정에 적합한 차세대 고속 전철을 시험 제작하여 운용하는 것이 목적이다. 시속 350 km/h의 운행 속도를 목표로 하는 한국형 고속 전철은 현재 개발이 완료되어, 시험 주행 트랙에서 증속을 위한 시험 운행을 계속하고 있다. 한국형 고속 전철은 열차 내 각종 제어 장치들 간의 데이터 교환를 위해서 실시간 네트워크인 열차통신 네트워크(Train Communication Network; TCN)를 사용한다. 약 10년간의 표준 보완 기간을 거쳐서 1999년 국제 표준으로 확정된 TCN(IEC61373)은 열차 전용의 실시간 통신 네트워크로 열차 장치의 제어 및 진단에 적합한 다양한 기능과 특징을 가지고 있다. 한국형 고속전철은 열차의 주 제어 및 감시를 담당하는 주관 제어장치(SCU, Supervisory Control Unit)와 열차 안전에 중요한 역할을 하는 자동 열차 제어 장치(ATC, Automatic Train Control)을 포함하는 55개의 제어 장치들이 TCN으로 연결되어서 상호간의 데이터 교환을 수행하도록 구성되어 있다. 본 논문에서는 한국형 고속전철에 사용될 TCN의 구조와 실제 필드에 사용되어지기 위해서 필수적으로 필요한 네트워크의 고장 진단 기법에 대해서 설명한다.

  • PDF

Study on the Aerodynamic Advancements of the Nose and Pantograph of a High-Speed Train (고속열차 전두부 및 팬터그래프 공력성능 향상기술 연구)

  • Rho, Joo-Hyun;Ku, Yo-Cheon;Yun, Su-Hwan;Kwak, Min-Ho;Park, Hoon-Il;Kim, Kyu-Hong;Lee, Dong-Ho
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.416-421
    • /
    • 2008
  • Recent high-speed trains around the world have achieved remarkable improvement in speed. In Korea, the new high-speed train with maximum speed of 400km/h has been developing through the 'Future High-Speed Rail System Project'. The improvement in train speed brings numerous aerodynamic problems such as strong aerodynamic resistance, noise, drastic pressure variation due to the crosswind or passing by, micro-pressure wave at tunnel exit, and so on. Especially, the nose shape of high-speed train is closely related to the most of the aerodynamic problems. Also the pantograph has to be considered for noise prevention and detachment problems. In this paper, the project, 'Research on the Aerodynamic Technology Advancement of the High-Speed EMU' is introduced briefly, which is one of the efforts for the speed improvement of the 'HEMU400x'. Finally, two main results of train nose and pantograph will be shown. First, the optimization of the cross-sectional area distribution of the high-speed train nose to reduce tunnel micro-pressure wave, and second, robust design optimization of the panhead shape of a pantograph.

  • PDF

A Study on Conceptual Design for Crashworthiness of the Next Generation High-speed EMU (동력분산형 차세대고속전철의 충돌안전도 개념설계 연구)

  • Kim, Geo-Young;Cho, Hyun-Jik;Koo, Jeong-Seo
    • Journal of the Korean Society for Railway
    • /
    • v.11 no.3
    • /
    • pp.300-310
    • /
    • 2008
  • Through this study, a conceptual design for the next generation high-speed EMU has been derived to meet the crash worthiness requirements of the Korean rollingstock safety regulation. The crashworthiness regulations require some performance requirements for two heavy collision accident scenarios; a train-to-train collision at the relative speed of 36 km/h, and a collision against a standard deformable obstacle of 15 ton at 110km/h. The complete train set will be composed of 2TC-6M with 13 ton axle load, which is different from KTX with the power car of 17 ton axle load. Using theoretical and numerical analyses, a crashworthy conceptual design was derived in terms of mean crush forces and energy absorptions for principal crushable structures and devices. The derived conceptual design was evaluated and improved using one dimensional dynamic simulations for the bar-spring-damper-mass model. It is shown from the simulation results that the suggested conceptual design can easily satisfy domestic crashworthiness requirements.

Analysis of Effect of Pantograph Cover on the Current Collection Quality of High Speed Train using Real Train Experiment (실차시험을 통한 팬터그래프 커버가 고속열차의 집전성능에 미치는 영향에 대한 분석)

  • Oh, Hyuck Keun;Kim, Seogwon;Cho, Yong-hyun;Kwak, Minho;Kwon, Sam Young
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.4
    • /
    • pp.409-416
    • /
    • 2016
  • The contact force characteristic between the pantograph and the catenary wire represents the current collection quality of trains; it should be precisely controlled under international standard. Recently, a noise reduction cover has been installed around the pantograph of high speed trains. However, little study on the contact force by the pantograph cover has been conducted. In this study, the impact on the current collection performance of the pantograph cover was analyzed by dynamic contact force measurement using a next generation high speed train (HEMU-430X). As a result, it was confirmed that the attachment of a pantograph cover could lower the mean contact force by approximately 50N at 300km/h. In addition, the pure difference of the average contact force by the presence of pantograph cover, except for the static pressure, was measured and found to be up to 110N at 300km/h. It was also found that the standard deviation of the contact force of 3~5N could be changed by use of a pantograph cover.

A Suggestion of Blasting Patterns of a Mine closed to Railway Line for Securing Safety of High Speed Train (고속철도 안전확보를 위한 노선 인접 광산의 발파패턴 제안)

  • Kim, Hyun-Ki;Lee, Sung-Hyeok;Lee, Jin-Wook;Choi, Chan-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.5
    • /
    • pp.1-9
    • /
    • 2015
  • Recently Honam high-speed railroad line is constructed in southern part of Korea. This line is for next generation HST named HEMU-430X. But there is a limestone mine near this line and this mine will make a process to dig a passageway under the railway line. In this case, safety of railroad system and stability of mine are crucial problems on both sides. By measuring mine blasting vibration and calculating regression equation, effect of mine blasting to train running is investigated quantitatively. 0.5 kine (cm/sec) is applied as a management specification of vibration based on field measurement. In this study, changes of blasting patterns are suggested to control vibration of mine blasting. And the effect of train vibration to mine is also invesitigated by numerical analysis.