• Title/Summary/Keyword: 차륜 모니터링 시스템

Search Result 4, Processing Time 0.019 seconds

Advanced Railway Vehicle Technology using Smart Materials (지능재료를 이용한 차세대 철도차량기술)

  • Kim, Jae-Hwan;Kang, Bu-Byoung;Kim, Kyeong-Jin;Chung, Heung-Chai;Choi, Sung-Kyu
    • Journal of the Korean Society for Railway
    • /
    • v.6 no.4
    • /
    • pp.252-256
    • /
    • 2003
  • Smart materials can adapt to changes of environment like living organs in nature such that they can maximize the performance and minimize the maintenance expense of engineering systems. Such materials have been paid attention ten years ago and applied in the area of industry, aerospace, transportation and civil structures. This paper summarizes smart material technology and shows some application examples in railway vehicles. Also, its future of smart material technology in railway vehicle technology is envisaged based on its possibility and practical aspect.

Technologies for improving the running safety of a tram operating on the concrete embedded track (콘크리트 매립형 궤도를 운행하는 트램의 주행안전성 향상 기술)

  • Seo, Sung-il;Mun, Hyung-Suk;Kim, Sun-Chun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.10
    • /
    • pp.717-724
    • /
    • 2017
  • To improve the running safety of a tram operating on a concrete embedded track, a bogie, the core system of the tram, was developed and fabricated. After it was integrated with the prototype car body, a short distance track with a sharp curve and steep gradient was constructed for the test operation. A formula to check the interference of the wheel flange with the track during running was proposed. Based on the results provided by the formula, the track was designed. Another simple formula was derived to estimate the derailment quotient and the wheel unloading ratio. During running on the track, the acceleration of the car body was measured and the interface status between the wheel and the track was monitored by a video system. According to the results calculated by these simple formulas, the derailment quotient and wheel unloading ratio were estimated to be within the safety criteria. In the actual test, no derailment occurred and the measured acceleration satisfied the criteria. Also, there was no interference between the wheel and track. The video monitoring results showed no signs of derailment, such as the climbing of the wheel. The pinion in the center showed good running safety, contacting smoothly with the rack. The measurements of environmental noise proved that the criteria were satisfied.

Fault Diagnosis of a High-speed Railway Reduction Unit Using Analysis of Vibration Characteristics (고속철도차량 감속구동장치의 이상진단을 위한 진동특성분석)

  • Ji, Hae Young;Lee, Kang Ho;Kim, Jae Chul;Lee, Dong Hyoung;Moon, Kyoung Ho
    • Journal of the Korean Society for Railway
    • /
    • v.16 no.1
    • /
    • pp.26-31
    • /
    • 2013
  • The reduction unit is one of the most important components for railway vehicles because the torque of the motor must be transmitted to the wheels of the vehicle by the reduction unit. The faults in the reduction units of high-speed trains are caused by damage such as gear, fatigue. These have serious impacts on safety of the train during operation. To address this development of a system for monitoring, fault diagnosis of the reduction unit is needed to keep the vehicle running safely. Before that can be accomplished, it is most important to understand the vibration characteristics of the reduction unit in a normal state. Vibration diagnosis technology using characteristic-analysis of vibration waveform and frequency is known to be the most effective method for fault diagnosis. In this paper, we analyzed the vibration characteristics of the reduction units two Korean high-speed trains (KTX and KTX II), under normal conditions, by two test methods (driving gear test, full-vehicle test).

A Study of Big data-based Machine Learning Techniques for Wheel and Bearing Fault Diagnosis (차륜 및 차축베어링 고장진단을 위한 빅데이터 기반 머신러닝 기법 연구)

  • Jung, Hoon;Park, Moonsung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.1
    • /
    • pp.75-84
    • /
    • 2018
  • Increasing the operation rate of components and stabilizing the operation through timely management of the core parts are crucial for improving the efficiency of the railroad maintenance industry. The demand for diagnosis technology to assess the condition of rolling stock components, which employs history management and automated big data analysis, has increased to satisfy both aspects of increasing reliability and reducing the maintenance cost of the core components to cope with the trend of rapid maintenance. This study developed a big data platform-based system to manage the rolling stock component condition to acquire, process, and analyze the big data generated at onboard and wayside devices of railroad cars in real time. The system can monitor the conditions of the railroad car component and system resources in real time. The study also proposed a machine learning technique that enabled the distributed and parallel processing of the acquired big data and automatic component fault diagnosis. The test, which used the virtual instance generation system of the Amazon Web Service, proved that the algorithm applying the distributed and parallel technology decreased the runtime and confirmed the fault diagnosis model utilizing the random forest machine learning for predicting the condition of the bearing and wheel parts with 83% accuracy.