• Title/Summary/Keyword: 차로측위

Search Result 2, Processing Time 0.051 seconds

The Tunnel Lane Positioning System of a Autonomous Vehicle in the LED Lighting (LED 조명을 이용한 자율주행차용 터널 차로측위 시스템)

  • Jeong, Jae hoon;Lee, Dong heon;Byun, Gi-sig;Cho, Hyung rae;Cho, Yoon ho
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.16 no.1
    • /
    • pp.186-195
    • /
    • 2017
  • Recently, autonomous vehicles have been studied actively. There are various technologies such as ITS, Connected Car, V2X and ADAS in order to realize such autonomous driving. Among these technologies, it is particularly important to recognize where the vehicle is on the road in order to change the lane and drive to the destination. Generally, it is done through GPS and camera image processing. However, there are limitations on the reliability of the positioning due to shaded areas such as tunnels in the case of GPS, and there are limitations in recognition and positioning according to the state of the road lane and the surrounding environment when performing the camera image processing. In this paper, we propose that LED lights should be installed for autonomous vehicles in tunnels which are shaded area of the GPS. In this paper, we show that it is possible to measure the position of the current lane of the autonomous vehicle by analyzing the color temperature after constructing the tunnel LED lighting simulation environment which illuminates light of different color temperature by lane. Based on the above, this paper proposes a lane positioning technique using tunnel LED lights.

Vehicle Localization Method for Lateral Position within Lane Based on Vision and HD Map (비전 및 HD Map 기반 차로 내 차량 정밀측위 기법)

  • Woo, Rinara;Seo, Dae-Wha
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.5
    • /
    • pp.186-201
    • /
    • 2021
  • As autonomous driving technology advances, the accuracy of the vehicle position is important for recognizing the environments around driving. Map-matching localization techniques based on high definition (HD) maps have been studied to improve localization accuracy. Because conventional map-matching techniques estimate the vehicle position based on an HD map reference dataset representing the center of the lane, the estimated position does not reflect the deviation of the lateral distance within the lane. Therefore, this paper proposes a localization system based on the reference lateral position dataset extracted using image processing and HD maps. Image processing extracts the driving lane number using inverse perspective mapping, multi-lane detection, and yellow central lane detection. The lane departure method estimates the lateral distance within the lane. To collect the lateral position reference dataset, this approach involves two processes: (i) the link and lane node is extracted based on the lane number obtained from image processing and position from GNSS/INS, and (ii) the lateral position is matched with the extracted link and lane node. Finally, the vehicle position is estimated by matching the GNSS/INS local trajectory and the reference lateral position dataset. The performance of the proposed method was evaluated by experiments carried out on a highway environment. It was confirmed that the proposed method improves accuracy by about 1.0m compared to GNSS / INS, and improves accuracy by about 0.04m~0.21m (7~30%) for each section when compared with the existing lane-level map matching method.