• Title/Summary/Keyword: 차량 GPS

Search Result 507, Processing Time 0.023 seconds

Positioning by using Speed and GeoMagnetic Sensor Data base on Vehicle Network (차량 네트워크 기반 속도 및 지자기센서 데이터를 이용한 측위 시스템)

  • Moon, Hye-Young;Kim, Jin-Deog;Yu, Yun-Sik
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.12
    • /
    • pp.2730-2736
    • /
    • 2010
  • Recently, various networks have been introduced in the car of the internal and external sides. These have been integrated by one HMI(Human Machine Interface) to control devices of each network and provide information service. The existing vehicle navigation system, providing GPS based vehicle positioning service, has been included to these integrated networks as a default option. The GPS has been used to the most universal device to provide position information by using satellites' signal. But It is impossible to provide the position information when the GPS can't receive the satellites' signal in the area of tunnel, urban canyon, or forest canopy. Thus, this paper propose and implement the method of measuring vehicle position by using the sensing data of internal CAN network and external Wi-Fi network of the integrated car navigation circumstances when the GPS doesn't work normally. The results obtained by implementation shows the proposed method works well by map matching.

Design of a Vehicle-Mounted GPS Antenna for Accurate Positioning (차량 정밀 측위용 이중대역 GPS 안테나 설계)

  • Pham, Nu;Chung, Jae-Young
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.2
    • /
    • pp.145-150
    • /
    • 2016
  • The capability of accurate positioning and tracking is necessary to implement an unmanned autonomous driving system. The moving-baseline GPS Technique is a promising candidate to mitigate positioning errors of conventional GPS system. It provides accurate positioning data based on the phase difference between received signals from multiple GPS antennas mounted on the same platform. In this paper, we propose a dual-band dual-circularly-polarized antenna suitable for the moving-baseline GPS. The proposed antenna operates at GPS L1 and L2 bands, and fed by the side of the antenna instead of the bottom. The antenna is firstly designed by calculating theoretical values of key parameters, and then optimized by means of 3D full-wave simulation software. Simulation and measurement results show that the optimized antenna offers 6.1% and 3.7% bandwidth at L1 and L2, respectively, with axial ratio bandwidth of more than 1%. The size of the antenna is $73mm{\times}73mm{\times}6.4mm$, which is small and low-profile.

Implementation and Analysis on the Automated Vehicle Location System(AVLS) using Global Positioning System(GPS) / Personal Communication System(PCS) / Internet (차량위치파악을 위한 위성항법/개인이동통신/인터넷의 통합시스템 구현 및 분석)

  • 박영주;김호중;장석철;안병하
    • Journal of Korean Society of Transportation
    • /
    • v.17 no.3
    • /
    • pp.7-20
    • /
    • 1999
  • This Paper Presents a Internet-based Real-Time Automated Vehicle Location System(AVLS), which is able to Provide users with real-time vehicle Positioning information. When Inverted Differential GPS is available, this system does more aggressive position correction than GPS, and more useful for public transportation and commercial application than DGPS in terms of cost.

  • PDF

A Study on Accuracy Enhancement of Low Cost GPS Receiver for Navigation (Navigation을 위한 저가 GPS 수신기 정확도 향상을 위한 연구)

  • 강준묵;조성호;임태형;강기석
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2003.04a
    • /
    • pp.433-441
    • /
    • 2003
  • 최근 SA(Selective Availability)의 해제에 따른 GPS의 활용이 증대되면서 차량운행에 있어서도 저가 GPS 수신기의 활용이 활발하게 이루어지고 있으며, 일반 차량 운행자를 위한 상용화가 급속도로 이루어지고 있다. 하지만 저가 GPS수신기를 통한 실시간 위치정보의 제공은 실질적으로 상당한 오차를 포함하고 있다. 이는 저가 수신기가 가지고 있는 문제라 할 수 있다. 이에 본 연구에서는 저가 수신기와 정밀 측위용 이주파 수신기를 이용하여 측지분야에서 검증된 GPS측량방법을 통해 오차를 비교ㆍ분석하고 저가 수신기의 정확도 향상을 위한 방법을 제시하고자 하였다.

  • PDF

A Study of making connected car using GPS (GPS 를 이용한 차량 자율주행 보조 및 제어)

  • Park, Beom Seok;Jeon, Han Gyoel
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2020.11a
    • /
    • pp.284-287
    • /
    • 2020
  • 현재 자율주행은 Stand Alone 으로 차량 자체적인 센서만을 이용해서 자율주행을 하고 있다. 이번 연구로 Stand Alone 하지 않은 서버 제어 방식의 자율주행 차량 개발이 가능해져 자율주행 차량의 센서와 연산장치가 줄어 차량의 가격이 줄어들며 이 시스템의 궁극적 목표인 자율주행 차량의 사고 감소에 큰 도움을 줄 것을 기대한다.

Analysis on the Variation for Speed Difference and Spacing of Travel Vehicles in Uninterrupted Flow using GPS (GPS를 이용한 연속류 통행차량의 속도차와 차두간격 변화에 대한 해석)

  • Kim, Jae-Seok;Lee, Sang-Kwan;Woo, Yong-Han
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.4 no.3
    • /
    • pp.51-60
    • /
    • 2001
  • The travel behavior can be analysed microscopically using GPS because the travel characteristics can be found out by travelling two test cars loaded with GPS equipments. The speed difference and spacing variation between the lead vehicle and the following's in uninterrupted flow are the important variables related to capacity and safety. This study analysed these with data obtained by travelling the 4th Line and 28th Line of the national road. The variation width in speed difference in the run time is below 3.0%. But, related to the speed difference in the situation of acceleration and deceleration the difference after 4second is bigger than that just after the start. The spacing variation is similar to this. The spacing just before deceleration concerning safety was analysed. When the theoretical values by the modeling method and observed values were compared, the observed values were analysed 12.52% shorter than the other in average.

  • PDF

Arrival Time Guidance System of Circular vehicles Using GPS and CDMA/Internet (GPS와 CDMA/인터넷을 이용한 순환차량 도착시각 안내 시스템)

  • Choi Dae-Woo
    • The Journal of the Korea Contents Association
    • /
    • v.6 no.5
    • /
    • pp.14-19
    • /
    • 2006
  • In this paper, we describe an arrival time guidance system of circular vehicles using GPS, CDMA and TCP/IP technology. The on-board equipment consists of a GPS receiver and a PDA phone. The on-board equipment sends the current position data of the vehicle to the positioning server via CDMA and Internet. The server predicts the arrival time to the next bus-stop. Any user can lookup the current position and the predicted arrival time of the vehicle utilizing his mobile phone, PDA phone, or Web.

  • PDF

Development of GPS/IMU/SPR Integrated Algorithm and Performance Analysis for Determination of Precise Car Positioning (정밀 차량 위치결정을 위한 GPS/IMU/SPR 통합 알고리즘 개발 및 성능 분석)

  • Han, Joong-Hee;Kang, Beom Yeon;Kwon, Jay Hyoun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.32 no.2
    • /
    • pp.163-171
    • /
    • 2014
  • Based on the GPS/IMU integration, the car navigation has unstable conditions as well as drastically reduces accuracies in urban region. Nowadays, many cars mounted the camera to record driving states. If the ground coordinates of street furniture are known, the position and attitude of camera can be determined through SPR(Single Photo Resection). Therefore, an estimated position and attitude from SPR can be applied measurements in Kalman filter for updating errors of navigation solutions from GPS/IMU integration. In this study, the GPS/IMU/SPR integration algorithm was developed in loosely coupled modes through extended Kalman filters. Also, in order to analyze performances of GPS/IMU/SPR, simulation tests were conducted in GPS signal reception environments and the GCPs (Ground Control Points) distributions. In fact, the position and attitude gathered from GPS/IMU/SPR integration are more precise than the position and attitude from GPS/IMU integration. When IPs (image points), corresponded to GCPs, were concentrated in the center of image, the position error in the optical axis respectively increased. To understand effects from SPR, we plan to carry additional test on the magnitude of GCP, IP and initial exterior orientation errors.

Realization of a Automatic Grading System for Driver's License Test (자동차 운전면허 시험을 위한 자동 채점 시스템 구현)

  • Kim, Chul Woo;Lee, Dong Hahk;Yang, Jae Soo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.16 no.5
    • /
    • pp.109-120
    • /
    • 2017
  • It is important to estimate objectively in the driving test. Especially, the driving test is examined by totally driving ability, rule observation and situational judgement. For this, a grading automation system for driving test was presented by using GPS, sensor data and equipment operation informations. This system is composed of vehicle mounted module, automatic grading terminal, data controller, data storage and processing server. The vehicle mounted module gathters sensor data in the car. The terminal performs automatic grading using the received sensor data according the driving test criterion. To overcome the misposition of vehicle in the map due to GPS error, we proposed the automatic grading system by map matching method, path deviation and return algorithm. In the experimental results, it was possible to grade automatically, display the right position of the car, and return to the right path under 10 seconds when the vehicle was out of the shadow region of the GPS. This system can be also applied to the driving education.