• Title/Summary/Keyword: 차량 탐지

Search Result 232, Processing Time 0.023 seconds

The development of RF-ID system for position recognition of underground facilities (지중 매설물 무선 위치인식 시스템 개발)

  • Lee, W.T.;Lee, J.J.;Park, Y.H.;Kim, K.H.;Kim, S.W.;Lee, Y.C.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07g
    • /
    • pp.3193-3195
    • /
    • 1999
  • 본 논문은 전자유도방식을 이용한 무선인식시스템을 지하매설물에 적용하였다. 설계된 시스템은 송신주파수 132KHz, 응답주파수 66KHz로서 부반송파에 의한 ASK 방식으로 쌍방향 전송방식을 채택하였다. 실험결과 지하 2m 범위까지 4800bps의 전송속도로 60km의 이동속도를 갖는 차량으로 쌍방향 통신이 가능하여 차량을 이용한 지중 매설물 위치탐지 시스템 적용에 별다른 은제점이 없었다. 따라서 본 시스템의 도입으로 방대한 도면이나 DB에 의존해야 하는 기존의 지중 매설물 관리시스템에서 벗어나 정확한 현장 데이터에 의한 효율적인 지하 매설물 탐색은 물론 쌍방향 통신에 의한 신속한 매설물 데이터의 변경으로 신뢰성 있는 지중 매설물 관리가 기대된다.

  • PDF

실증 기반 딥러닝 영상분석 기술 제공을 위한 클라우드 기반 지능형 영상보안 플랫폼

  • Lim, Kyung-Soo;Kim, Geon-Woo
    • Review of KIISC
    • /
    • v.29 no.3
    • /
    • pp.37-43
    • /
    • 2019
  • 딥러닝을 비롯한 인공기능과 영상처리 분야의 접목은 기존 물리보안의 기술적 한계를 뛰어넘어 새로운 기회의 장을 마련하고 있다. 하지만 딥러닝 기반 영상분석 기술도 지능형 영상감시가 필요한 실제 현장에서는 다양한 환경의 제약사항으로 인해 성능이 저하될 가능성이 높다. 본 논문에서는 실제 CCTV 환경의 영상 데이터를 확보하여 신경망을 이용한 지속적인 학습을 통해 영상분석의 성능을 개선하는 클라우드 기반 지능형 영상보안 플랫폼을 소개한다. 클라우드 기반 지능형 영상보안 플랫폼은 지자체 통합관제센터에서 수집한 CCTV 영상을 학습 데이터로 활용하여, 현장에서 신뢰받을 수 있는 사람 검출, 사람/차량 재식별, 열악 차량번호판 탐지 등의 지능형 영상분석 서비스를 제공할 수 있다.

Detection of Abnormal CAN Messages Using Periodicity and Time Series Analysis (CAN 메시지의 주기성과 시계열 분석을 활용한 비정상 탐지 방법)

  • Se-Rin Kim;Ji-Hyun Sung;Beom-Heon Youn;Harksu Cho
    • The Transactions of the Korea Information Processing Society
    • /
    • v.13 no.9
    • /
    • pp.395-403
    • /
    • 2024
  • Recently, with the advancement of technology, the automotive industry has seen an increase in network connectivity. CAN (Controller Area Network) bus technology enables fast and efficient data communication between various electronic devices and systems within a vehicle, providing a platform that integrates and manages a wide range of functions, from core systems to auxiliary features. However, this increased connectivity raises concerns about network security, as external attackers could potentially gain access to the automotive network, taking control of the vehicle or stealing personal information. This paper analyzed abnormal messages occurring in CAN and confirmed that message occurrence periodicity, frequency, and data changes are important factors in the detection of abnormal messages. Through DBC decoding, the specific meanings of CAN messages were interpreted. Based on this, a model for classifying abnormalities was proposed using the GRU model to analyze the periodicity and trend of message occurrences by measuring the difference (residual) between the predicted and actual messages occurring within a certain period as an abnormality metric. Additionally, for multi-class classification of attack techniques on abnormal messages, a Random Forest model was introduced as a multi-classifier using message occurrence frequency, periodicity, and residuals, achieving improved performance. This model achieved a high accuracy of over 99% in detecting abnormal messages and demonstrated superior performance compared to other existing models.

Efficient Learning and Classification for Vehicle Type using Moving Cast Shadow Elimination in Vehicle Surveillance Video (차량 감시영상에서 그림자 제거를 통한 효율적인 차종의 학습 및 분류)

  • Shin, Wook-Sun;Lee, Chang-Hoon
    • The KIPS Transactions:PartB
    • /
    • v.15B no.1
    • /
    • pp.1-8
    • /
    • 2008
  • Generally, moving objects in surveillance video are extracted by background subtraction or frame difference method. However, moving cast shadows on object distort extracted figures which cause serious detection problems. Especially, analyzing vehicle information in video frames from a fixed surveillance camera on road, we obtain inaccurate results by shadow which vehicle causes. So, Shadow Elimination is essential to extract right objects from frames in surveillance video. And we use shadow removal algorithm for vehicle classification. In our paper, as we suppress moving cast shadow in object, we efficiently discriminate vehicle types. After we fit new object of shadow-removed object as three dimension object, we use extracted attributes for supervised learning to classify vehicle types. In experiment, we use 3 learning methods {IBL, C4.5, NN(Neural Network)} so that we evaluate the result of vehicle classification by shadow elimination.

Developing Vehicle-launched Smoke Grenade M&S of Moderate-resolution for Applications in Engagement Simulation (교전시뮬레이션에의 활용을 위한 적정해상도의 차량 연막유탄 M&S 개발)

  • Min, Seojung;Lee, Sangjin
    • Journal of the Korea Society for Simulation
    • /
    • v.28 no.2
    • /
    • pp.59-69
    • /
    • 2019
  • Smoke grenade is the most primary counteract of tank for its survival against threats, therefore a number of related researches and developments of M&S are being conducted. In this research, a vehicle-launched smoke grenade model is developed, that covers the essential engineering-level parameters, and also is applicable to engagement-level simulations because of its unheavy computational load. First of all, input parameters of the model were determined to include the principal factors from engineering to engagement level. In the model, smoke and LOS are modeled as simple figures, a disk and a line, so that the computational load is not as much as that of particle-model-based M&Ss. A test simulation is also carried out to analyze the effect of smoke grenade for a tank. This model is to be inserted into a basic tank model on AddSIM. The users of AddSIM will be able to simulate various scenarios including smoke grenades.

Improvement of Underground Cavity and Structure Detection Performance Through Machine Learning-based Diffraction Separation of GPR Data (기계학습 기반 회절파 분리 적용을 통한 GPR 탐사 자료의 도로 하부 공동 및 구조물 탐지 성능 향상)

  • Sooyoon Kim;Joongmoo Byun
    • Geophysics and Geophysical Exploration
    • /
    • v.26 no.4
    • /
    • pp.171-184
    • /
    • 2023
  • Machine learning (ML)-based cavity detection using a large amount of survey data obtained from vehicle-mounted ground penetrating radar (GPR) has been actively studied to identify underground cavities. However, only simple image processing techniques have been used for preprocessing the ML input, and many conventional seismic and GPR data processing techniques, which have been used for decades, have not been fully exploited. In this study, based on the idea that a cavity can be identified using diffraction, we applied ML-based diffraction separation to GPR data to increase the accuracy of cavity detection using the YOLO v5 model. The original ML-based seismic diffraction separation technique was modified, and the separated diffraction image was used as the input to train the cavity detection model. The performance of the proposed method was verified using public GPR data released by the Seoul Metropolitan Government. Underground cavities and objects were more accurately detected using separated diffraction images. In the future, the proposed method can be useful in various fields in which GPR surveys are used.

Detection Method for Road Pavement Defect of UAV Imagery Based on Computer Vision (컴퓨터 비전 기반 UAV 영상의 도로표면 결함탐지 방안)

  • Joo, Yong Jin
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.35 no.6
    • /
    • pp.599-608
    • /
    • 2017
  • Cracks on the asphalt road surface can affect the speed of the car, the consumption of fuel, the ride quality of the road, and the durability of the road surface. Such cracks in roads can lead to very dangerous consequences for long periods of time. To prevent such risks, it is necessary to identify cracks and take appropriate action. It takes too much time and money to do it. Also, it is difficult to use expensive laser equipment vehicles for initial cost and equipment operation. In this paper, we propose an effective detection method of road surface defect using ROI (Region of Interest) setting and cany edge detection method using UAV image. The results of this study can be presented as efficient method for road surface flaw detection and maintenance using UAV. In addition, it can be used to detect cracks such as various buildings and civil engineering structures such as buildings, outer walls, large-scale storage tanks other than roads, and cost reduction effect can be expected.

Performance Improvement of Pedestrian Detection using a GM-PHD Filter (GM-PHD 필터를 이용한 보행자 탐지 성능 향상 방법)

  • Lee, Yeon-Jun;Seo, Seung-Woo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.12
    • /
    • pp.150-157
    • /
    • 2015
  • Pedestrian detection has largely been researched as one of the important technologies for autonomous driving vehicle and preventing accidents. There are two categories for pedestrian detection, camera-based and LIDAR-based. LIDAR-based methods have the advantage of the wide angle of view and insensitivity of illuminance change while camera-based methods have not. However, there are several problems with 3D LIDAR, such as insufficient resolution to detect distant pedestrians and decrease in detection rate in a complex situation due to segmentation error and occlusion. In this paper, two methods using GM-PHD filter are proposed to improve the poor rates of pedestrian detection algorithms based on 3D LIDAR. First one improves detection performance and resolution of object by automatic accumulation of points in previous frames onto current objects. Second one additionally enhances the detection results by applying the GM-PHD filter which is modified in order to handle the poor situation to classified multi target. A quantitative evaluation with autonomously acquired road environment data shows the proposed methods highly increase the performance of existing pedestrian detection algorithms.

Development of Human Detection Algorithm for Automotive Radar (보행자 탐지용 차량용 레이더 신호처리 알고리즘 구현 및 검증)

  • Hyun, Eugin;Jin, Young-Seok;Kim, Bong-Seok;Lee, Jong-Hun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.25 no.1
    • /
    • pp.92-102
    • /
    • 2017
  • For an automotive surveillance radar system, fast-chirp train based FMCW (Frequency Modulated Continuous Wave) radar is a very effective method, because clutter and moving targets are easily separated in a 2D range-velocity map. However, pedestrians with low echo signals may be masked by strong clutter in actual field. To address this problem, we proposed in the previous work a clutter cancellation and moving target indication algorithm using the coherent phase method. In the present paper, we initially composed the test set-up using a 24 GHz FMCW transceiver and a real-time data logging board in order to verify this algorithm. Next, we created two indoor test environments consisting of moving human and stationary targets. It was found that pedestrians and strong clutter could be effectively separated when the proposed method is used. We also designed and implemented these algorithms in FPGA (Field Programmable Gate Array) in order to analyze the hardware and time complexities. The results demonstrated that the complexity overhead was nearly zero compared to when the typical method was used.

A Method of Obstacle Detection in the Dust Environment for Unmanned Ground Vehicle (먼지 환경의 무인차량 운용을 위한 장애물 탐지 기법)

  • Choe, Tok-Son;Ahn, Seong-Yong;Park, Yong-Woon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.6
    • /
    • pp.1006-1012
    • /
    • 2010
  • For the autonomous navigation of an unmanned ground vehicle in the rough terrain and combat, the dust environment should necessarily be overcome. Therefore, we propose a robust obstacle detection methodology using laser range sensor and radar. Laser range sensor has a good angle and distance accuracy, however, it has a weakness in the dust environment. On the other hand, radar has not better the angle and distance accuracy than laser range sensor, it has a robustness in the dust environment. Using these characteristics of laser range sensor and radar, we use laser range sensor as a main sensor for normal times and radar as a assist sensor for the dust environment. For fusion of laser range sensor and radar information, the angle and distance data of the laser range sensor and radar are separately transformed to the angle and distance data of virtual range sensor which is located in the center of the vehicle. Through distance comparison of laser range sensor and radar in the same angle, the distance data of a fused virtual range sensor are changed to the distance data of the laser range sensor, if the distance of laser range sensor and radar are similar. In the other case, the distance data of the fused virtual range sensor are changed to the distance data of the radar. The suggested methodology is verified by real experiment.