• Title/Summary/Keyword: 차량 탐지

Search Result 232, Processing Time 0.023 seconds

Study of a underpass inundation forecast using object detection model (객체탐지 모델을 활용한 지하차도 침수 예측 연구)

  • Oh, Byunghwa;Hwang, Seok Hwan
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.302-302
    • /
    • 2021
  • 지하차도의 경우 국지 및 돌발홍수가 발생할 경우 대부분 침수됨에도 불구하고 2020년 7월 23일 부산 지역에 밤사이 시간당 80mm가 넘는 폭우가 발생하면서 순식간에 지하차도 천장까지 물이 차면서 선제적인 차량 통제가 우선적으로 수행되지 못하여 미처 대피하지 못한 3명의 운전자 인명사고가 발생하였다. 수재해를 비롯한 재난 관리를 빠르게 수행하기 위해서는 기존의 정부 및 관주도 중심의 단방향의 재난 대응에서 벗어나 정형 데이터와 비정형 데이터를 총칭하는 빅데이터의 통합적 수집 및 분석을 수행이 필요하다. 본 연구에서는 부산지역의 지하차도와 인접한 지하터널 CCTV 자료(센서)를 통한 재난 발생 시 인명피해를 최소화 정보 제공을 위한 Object Detection(객체 탐지)연구를 수행하였다. 지하터널 침수가 발생한 부산지역의 CCTV 영상을 사용하였으며, 영상편집에 사용되는 CCTV 자료의 음성자료를 제거하는 인코딩을 통하여 불러오는 영상파일 용량파일 감소 효과를 볼 수 있었다. 지하차도에 진입하는 물체를 탐지하는 방법으로 YOLO(You Only Look Once)를 사용하였으며, YOLO는 가장 빠른 객체 탐지 알고리즘 중 하나이며 최신 GPU에서 초당 170프레임의 속도로 실행될 수 있는 YOLOv3 방법을 적용하였으며, 분류작업에서 보다 높은 Classification을 가지는 Darknet-53을 적용하였다. YOLOv3 방법은 기존 객체탐지 모델 보다 좀 더 빠르고 정확한 물체 탐지가 가능하며 또한 모델의 크기를 변경하기만 하면 다시 학습시키지 않아도 속도와 정확도를 쉽게 변경가능한 장점이 있다. CCTV에서 오전(일반), 오후(침수발생) 시점을 나눈 후 Car, Bus, Truck, 사람을 분류하는 YOLO 알고리즘을 적용하여 지하터널 인근 Object Detection을 실제 수행 하였으며, CCTV자료를 이용하여 실제 물체 탐지의 정확도가 높은 것을 확인하였다.

  • PDF

Autoencoder-Based Automotive Intrusion Detection System Using Gaussian Kernel Density Estimation Function (가우시안 커널 밀도 추정 함수를 이용한 오토인코더 기반 차량용 침입 탐지 시스템)

  • Donghyeon Kim;Hyungchul Im;Seongsoo Lee
    • Journal of IKEEE
    • /
    • v.28 no.1
    • /
    • pp.6-13
    • /
    • 2024
  • This paper proposes an approach to detect abnormal data in automotive controller area network (CAN) using an unsupervised learning model, i.e. autoencoder and Gaussian kernel density estimation function. The proposed autoencoder model is trained with only message ID of CAN data frames. Afterwards, by employing the Gaussian kernel density estimation function, it effectively detects abnormal data based on the trained model characterized by the optimally determined number of frames and a loss threshold. It was verified and evaluated using four types of attack data, i.e. DoS attacks, gear spoofing attacks, RPM spoofing attacks, and fuzzy attacks. Compared with conventional unsupervised learning-based models, it has achieved over 99% detection performance across all evaluation metrics.

A Design of Group Authentication by using ECDH based Group Key on VANET (VANET에서 ECDH 기반 그룹키를 이용한 그룹간 인증 설계)

  • Lee, Byung Kwan;Jung, Yong Sik;Jeong, Eun Hee
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.17 no.7
    • /
    • pp.51-57
    • /
    • 2012
  • This paper proposes a group key design based on ECDH(Elliptic Curve Diffie Hellman) which guarantees secure V2V and V2I communication. The group key based on ECDH generates the VGK(Vehicular Group key) which is a group key between vehicles, the GGK(Global Group Key) which is a group key between vehicle groups, and the VRGK(Vehicular and RSU Group key) which is a group key between vehicle and RSUs with ECDH algorithm without an AAA server being used. As the VRGK encrypted with RGK(RSU Group Key) is transferred from the current RSU to the next RSU through a secure channel, a perfect forward secret security is provided. In addition, a Sybil attack is detected by checking whether the vehicular that transferred a message is a member of the group with a group key. And the transmission time of messages and the overhead of a server can be reduced because an unnecessary network traffic doesn't happen by means of the secure communication between groups.

Line Segments Matching Framework for Image Based Real-Time Vehicle Localization (이미지 기반 실시간 차량 측위를 위한 선분 매칭 프레임워크)

  • Choi, Kanghyeok
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.2
    • /
    • pp.132-151
    • /
    • 2022
  • Vehicle localization is one of the core technologies for autonomous driving. Image-based localization provides location information efficiently, and various related studies have been conducted. However, the image-based localization methods using feature points or lane information has a limitation that positioning accuracy may be greatly affected by road and driving environments. In this study, we propose a line segment matching framework for accurate vehicle localization. The proposed framework consists of four steps: line segment extraction, merging, overlap area detection, and MSLD-based segment matching. The proposed framework stably performed line segment matching at a sufficient level for vehicle positioning regardless of vehicle speed, driving method, and surrounding environment.

Parking Lot Vehicle Counting Using a Deep Convolutional Neural Network (Deep Convolutional Neural Network를 이용한 주차장 차량 계수 시스템)

  • Lim, Kuoy Suong;Kwon, Jang woo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.17 no.5
    • /
    • pp.173-187
    • /
    • 2018
  • This paper proposes a computer vision and deep learning-based technique for surveillance camera system for vehicle counting as one part of parking lot management system. We applied the You Only Look Once version 2 (YOLOv2) detector and come up with a deep convolutional neural network (CNN) based on YOLOv2 with a different architecture and two models. The effectiveness of the proposed architecture is illustrated using a publicly available Udacity's self-driving-car datasets. After training and testing, our proposed architecture with new models is able to obtain 64.30% mean average precision which is a better performance compare to the original architecture (YOLOv2) that achieved only 47.89% mean average precision on the detection of car, truck, and pedestrian.

Method for Inferring Format Information of Data Field from CAN Trace (CAN 트레이스 분석을 통한 데이터 필드 형식 추론 방법 연구)

  • Ji, Cheongmin;Kim, Jimin;Hong, Manpyo
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.28 no.1
    • /
    • pp.167-177
    • /
    • 2018
  • As the number of attacks on vehicles has increased, studies on CAN-based security technologies are actively being carried out. However, since the upper layer protocol of CAN differs for each vehicle manufacturer and model, there is a great difficulty in researches such as developing anomaly detection for CAN or finding vulnerabilities of ECUs. In this paper, we propose a method to infer the detailed structure of the data field of CAN frame by analyzing CAN trace to mitigate this problem. In the existing Internet environment, many researches for reverse engineering proprietary protocols have already been carried out. However, CAN bus has a structure difficult to apply the existing protocol reverse engineering technology as it is. In this paper, we propose new field classification methods with low computation-cost based on the characteristics of data in CAN frame and existing field classification method. The proposed methods are verified through implementation that analyze CAN traces generated by simulations of CAN communication and actual vehicles. They show higher accuracy of field classification with lower computational cost compared to the existing method.

Estimation of Urban Traffic State Using Black Box Camera (차량 블랙박스 카메라를 이용한 도시부 교통상태 추정)

  • Haechan Cho;Yeohwan Yoon;Hwasoo Yeo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.2
    • /
    • pp.133-146
    • /
    • 2023
  • Traffic states in urban areas are essential to implement effective traffic operation and traffic control. However, installing traffic sensors on numerous road sections is extremely expensive. Accordingly, estimating the traffic state using a vehicle-mounted camera, which shows a high penetration rate, is a more effective solution. However, the previously proposed methodology using object tracking or optical flow has a high computational cost and requires consecutive frames to obtain traffic states. Accordingly, we propose a method to detect vehicles and lanes by object detection networks and set the region between lanes as a region of interest to estimate the traffic density of the corresponding area. The proposed method only uses less computationally expensive object detection models and can estimate traffic states from sampled frames rather than consecutive frames. In addition, the traffic density estimation accuracy was over 90% on the black box videos collected from two buses having different characteristics.

Experimental Analysis of Physical Signal Jamming Attacks on Automotive LiDAR Sensors and Proposal of Countermeasures (차량용 LiDAR 센서 물리적 신호교란 공격 중심의 실험적 분석과 대응방안 제안)

  • Ji-ung Hwang;Yo-seob Yoon;In-su Oh;Kang-bin Yim
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.34 no.2
    • /
    • pp.217-228
    • /
    • 2024
  • LiDAR(Light Detection And Ranging) sensors, which play a pivotal role among cameras, RADAR(RAdio Detection And Ranging), and ultrasonic sensors for the safe operation of autonomous vehicles, can recognize and detect objects in 360 degrees. However, since LiDAR sensors use lasers to measure distance, they are vulnerable to attackers and face various security threats. In this paper, we examine several security threats against LiDAR sensors: relay, spoofing, and replay attacks, analyze the possibility and impact of physical jamming attacks, and analyze the risk these attacks pose to the reliability of autonomous driving systems. Through experiments, we show that jamming attacks can cause errors in the ranging ability of LiDAR sensors. With vehicle-to-vehicle (V2V) communication, multi-sensor fusion under development and LiDAR anomaly data detection, this work aims to provide a basic direction for countermeasures against these threats enhancing the security of autonomous vehicles, and verify the practical applicability and effectiveness of the proposed countermeasures in future research.

A Study on Object Detection and Warning Model for the Prevention of Right Turn Car Accidents (우회전 차량 사고 예방을 위한 객체 탐지 및 경고 모델 연구)

  • Sang-Joon Cho;Seong-uk Shin;Myeong-Jae Noh
    • Journal of Digital Policy
    • /
    • v.2 no.4
    • /
    • pp.33-39
    • /
    • 2023
  • With a continuous occurrence of right-turn traffic accidents at intersections, there is an increasing demand for measures to address these incidents. In response, a technology has been developed to detect the presence of pedestrians through object detection in CCTV footage at right-turn areas and display warning messages on the screen to alert drivers. The YOLO (You Only Look Once) model, a type of object detection model, was employed to assess the performance of object detection. An algorithm was also devised to address misidentification issues and generate warning messages when pedestrians are detected. The accuracy of recognizing pedestrians or objects and outputting warning messages was measured at approximately 82%, suggesting a potential contribution to preventing right-turn accidents

Traffic Collision Detection at Intersections based on Motion Vector and Staying Period of Vehicles (차량의 움직임 벡터와 체류시간 기반의 교차로 추돌 검출)

  • Shin, Youn-Chul;Park, Joo-Heon;Lee, Myeong-Jin
    • Journal of Advanced Navigation Technology
    • /
    • v.17 no.1
    • /
    • pp.90-97
    • /
    • 2013
  • Recently, intelligent transportation system based on image processing has been developed. In this paper, we propose a collision detection algorithm based on the analysis of motion vectors and the staying periods of vehicles in intersections. Objects in the region of interest are extracted from the subtraction image between background images based on Gaussian mixture model and input images. Collisions and traffic jams are detected by analysing measured motion vectors of vehicles and their staying periods in intersections. Experiments are performed on video sequences actually recoded at intersections. Correct detection rate and false alarm rate are 85.7% and 7.7%, respectively.