• Title/Summary/Keyword: 차량 안정성 제어

Search Result 155, Processing Time 0.02 seconds

A Study on the Design Improvement to prevent the stoppage phenomenon of Launch Support Device for Self-Propelled Artillery (자주포용 발사지지대의 멈춤현상 방지를 위한 설계개선 연구)

  • Kim, Sung Hoon;Park, Young Min;Noh, Sang Wan;Park, Dae Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.5
    • /
    • pp.443-450
    • /
    • 2020
  • This paper reports a design improvement study to solve the stoppage phenomenon caused by the launch-support device applied to K105A1. The K105A1 is a weapon system equipped with an old 105 mm towed howitzer in a wheeled vehicle, which provides superior maneuverability compared to track equipment. The launch support device serves to withstand fire impact and load. In this way, this device is fixed firmly to the ground in preparation for the shooting mission and is responsible for the critical performance, such as fixing the position of the vehicle. On the other hand, during the field test, a temporary stoppage of the launch support occurred, which caused a problem of not being fixed to the ground. To solve this problem, the cause of failure was analyzed by a replay test and parts inspection. In addition, the operating concept, method, and design were analyzed to derive the cause and solve the problem by changing the parts design. Finally, the performance and firing missions were performed normally by applying the changed design to K105A1. The performance stability and reliability of the launch support device were confirmed, which are expected to be of great assistance in the development of military equipment in the future.

Development of the Risk Evaluation Model for Rear End Collision on the Basis of Microscopic Driving Behaviors (미시적 주행행태를 반영한 후미추돌위험 평가모형 개발)

  • Chung, Sung-Bong;Song, Ki-Han;Park, Chang-Ho;Chon, Kyung-Soo;Kho, Seung-Young
    • Journal of Korean Society of Transportation
    • /
    • v.22 no.6
    • /
    • pp.133-144
    • /
    • 2004
  • A model and a measure which can evaluate the risk of rear end collision are developed. Most traffic accidents involve multiple causes such as the human factor, the vehicle factor, and the highway element at any given time. Thus, these factors should be considered in analyzing the risk of an accident and in developing safety models. Although most risky situations and accidents on the roads result from the poor response of a driver to various stimuli, many researchers have modeled the risk or accident by analyzing only the stimuli without considering the response of a driver. Hence, the reliabilities of those models turned out to be low. Thus in developing the model behaviors of a driver, such as reaction time and deceleration rate, are considered. In the past, most studies tried to analyze the relationships between a risk and an accident directly but they, due to the difficulty of finding out the directional relationships between these factors, developed a model by considering these factors, developed a model by considering indirect factors such as volume, speed, etc. However, if the relationships between risk and accidents are looked into in detail, it can be seen that they are linked by the behaviors of a driver, and depending on drivers the risk as it is on the road-vehicle system may be ignored or call drivers' attention. Therefore, an accident depends on how a driver handles risk, so that the more related risk to and accident occurrence is not the risk itself but the risk responded by a driver. Thus, in this study, the behaviors of a driver are considered in the model and to reflect these behaviors three concepts related to accidents are introduced. And safe stopping distance and accident occurrence probability were used for better understanding and for more reliable modeling of the risk. The index which can represent the risk is also developed based on measures used in evaluating noise level, and for the risk comparison between various situations, the equivalent risk level, considering the intensity and duration time, is developed by means of the weighted average. Validation is performed with field surveys on the expressway of Seoul, and the test vehicle was made to collect the traffic flow data, such as deceleration rate, speed and spacing. Based on this data, the risk by section, lane and traffic flow conditions are evaluated and compared with the accident data and traffic conditions. The evaluated risk level corresponds closely to the patterns of actual traffic conditions and counts of accident. The model and the method developed in this study can be applied to various fields, such as safety test of traffic flow, establishment of operation & management strategy for reliable traffic flow, and the safety test for the control algorithm in the advanced safety vehicles and many others.

Model - Based Sensor Fault Detection and Isolation for a Fuel Cell in an Automotive Application (모델 기반 연료전지 스택 온도 센서 고장 감지 및 판별)

  • Han, Jaeyoung;Kim, Younghyeon;Yu, Sangseok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.11
    • /
    • pp.735-742
    • /
    • 2017
  • In this study, an effective model-based sensor fault detection methodology that can detect and isolate PEM temperature sensors fault is introduced. In fuel cell vehicle operation process, the stack temperature affects durability of a fuel cell. Thus, it is important for fault algorithm to detect the fault signals. The major objective of sensor fault detection is to guarantee the healthy operations of the fuel cell system and to prevent the stack from high temperature and low temperature. For the residual implementation, parity equation based on the state space is used to detect the sensors fault as stack temperature and coolant inlet temperature, and residual is compared with the healthy temperature signals. Then the residuals are evaluated by various fault scenarios that detect the presence of the sensor fault. In the result, the designed in this study fault algorithm can detect the fault signal.

Embedded Linux System for Car Self-Care-Control and Digital Home Network Appliance Control System (자동차 자가진단과 디지털 홈 네트워크 가전제어를 위한 임베디드 리눅스 시스템)

  • Kim, Kuk-Se;Bang, Sun-Kwang;Her, Jin;Ahn, Seong-Soo;Lee, Joon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.06a
    • /
    • pp.690-694
    • /
    • 2007
  • This study provide Car driver with car sensor information which is car trouble code in engine and many sensors. This provide car manager with many information of tar sensors when we go to vehicle maintenance. This system consist of embedded linux system which uses RS232 and EML327 for CAN communication of car system. This System can control digital appliances in home network using wireless and ZigBee. Finally this is a lot of application for embedded linux system which get sensor informations of car control sensor system.

  • PDF

Development of Embedded Board for Integrated Radiation Exposure Protection Fireman's Life-saving Alarm (일체형 방사선 피폭 방호 소방관 인명구조 경보기의 임베디드 보드 개발)

  • Lee, Young-Ji;Lee, Joo-Hyun;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.23 no.4
    • /
    • pp.1461-1464
    • /
    • 2019
  • In this paper, we propose the development of embedded board for integrated radiation exposure protection fireman's life-saving alarm capable of location tracking and radiation measurement. The proposed techniques consist of signal processing unit, communication unit, power unit, main control unit. Signal processing units apply shielding design, noise reduction technology and electromagnetic wave subtraction technology. The communication unit is designed to communicate using the wifi method. In the main control unit, power consumption is reduced to a minimum, and a high performance system is formed through small, high density and low heat generation. The proposed techniques are equipment operated by exposure to poor conditions, such as disaster and fire sites, so they are designed and manufactured for external appearance considering waterproof and thermal endurance. The proposed techniques were tested by an authorized testing agency to determine the effectiveness of embedded board. The waterproof grade has achieved the IP67 rating, which can maintain stable performance even when flooded with water at the disaster site due to the nature of the fireman's equipment. The operating temperature was measured in the range of -10℃ to 50℃ to cope with a wide range of environmental changes at the disaster site. The battery life was measured to be available 144 hours after a single charge to cope with emergency disasters such as a collapse accident. The maximum communication distance, including the PCB, was measured to operate at 54.2 meters, a range wider than the existing 50 meters, at a straight line with the command-and-control vehicle in the event of a disaster. Therefore, the effectiveness of embedded board for embedded board for integrated radiation exposure protection fireman's life-saving alarm has been demonstrated.