• 제목/요약/키워드: 차량인식

검색결과 1,036건 처리시간 0.03초

안드로이드 기기와 신경망을 이용한 차량 번호판 인식 (Vehicle License Plate Recognition Using Neural Networks and Android Devices)

  • 한종우;김윤
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2015년도 제52차 하계학술대회논문집 23권2호
    • /
    • pp.41-44
    • /
    • 2015
  • 본 논문에서는 안드로이드 기기를 활용하여 차량의 번호판을 인식하는 시스템을 제안한다. 이 시스템은 안드로이드 기기로 촬영한 차량의 이미지를 이용하여 번호판을 인식한다. 촬영한 이미지에서 번호판 영역을 추출한 후 번호판 영역 내에서 각각의 문자를 개별 추출한다. 추출된 각각의 문자에 대하여 세선화를 수행하고 세선화 후 얻은 이미지를 신경망의 입력으로 이용하여 최종적으로 개별의 문자를 인식하고 결과를 안드로이드 기기에 출력한다. 안드로이드 기기를 이용하여 바로 번호판을 인식할 수 있기 때문에 시, 공간에 대한 제약이 없으며 신경망을 사용하기 때문에 기존의 문자 인식 방법보다 우수한 인식률을 보인다.

  • PDF

SOM 알고리즘을 이용한 차량 번호판 인식과 주차 관리 시스템 개발 (Recognition of Car Plate using SOM Algorithm and Development of Parking Control System)

  • 김광백
    • 한국정보통신학회논문지
    • /
    • 제7권5호
    • /
    • pp.1052-1061
    • /
    • 2003
  • 본 논문은 SOM 알고리즘을 이용한 차량 번호판 인식 방법을 제안하고 차량 번호판 인식을 이용한 주차관리 시스템 개발에 대해서 기술한다. 차량 영상에서 번호판 영역을 추출하기 위해 수평$.$수직 에지의 형태학적 정보를 이용하고, 추출된 번호판에서 문자를 포함하는 특징 영역을 추출하기 위해 4 방향 윤곽선 추적 알고리즘을 이용한다. 추출된 특징 영역의 인식은 SOM 알고리즘을 적용한다. 50개의 실제 차량 영상을 실험한 결과, 제안된 번호판 영역 추출 방법이 기존의 RGB 정보를 이용한 방법과 HSI를 이용한 방법보다 추출율이 개선되었다. 그리고 SOM 알고리즘을 이용한 차량 번호판 인식이 효율적인 것을 확인하였다. 실험을 통하여 성능 향상을 보인 제안된 차량 번호판 인식 방법을 이용하여 주차 관리 시스템을 개발하였다.

기울어진 차량 번호판 영역의 검출 (The Detection of Slanted Car License Plate Region)

  • 문성원;장언동;송영준
    • 한국콘텐츠학회논문지
    • /
    • 제4권3호
    • /
    • pp.125-130
    • /
    • 2004
  • 본 논문에서는 디지털 카메라를 통하여 입력된 차량 영상으로부터 차량 번호판을 인식하는 방법을 제안한다. 최근 몇 년간 차량 번호판 영상을 인식하는 기술은 많은 발전을 이루어 왔다. 정확한 인식을 위한 핵심 기술은 차량 번호판 영역의 정확한 추출이다. 에지 정보나 칼라 정보로 번호판 영역을 추출할 경우, 번호판을 보는 시각에 따른 기울어진 번호판의 정확한 영역 추출이 어렵기 때문에 기존의 번호판 인식은 차량의 정면에서 촬영된 영상을 사용하였고 번호판 영역에 경사나 기울기를 고려하지 않았다. 본 연구에서는 입력 영상의 경사나 기울어진 입력 영상에 대한 인식이 가능한 형태로 변환하는 데 중점을 둔다. 그에 따라 영상에서 번호판의 위치 및 기울어짐 혹은 높낮이가 정면에서 벗어나더라도 번호판 영역 추출을 가능토록 칼라 정보를 이용하여 후보 영역을 추출한 후 선형 회귀 방정식을 사용하여 보다 정확하게 차량 번호판 영역을 추출하였다. 실험 결과 92%의 번호판 검출율을 보였으며, 50$^{\circ}$ 정도 기울어진 번호판에서도 문자의 인식이 가능함을 확인하였다.

  • PDF

훈련예제 병합을 이용한 자동차 차량번호판 문자인식 성능 향상 방안 (Vehicle License Plate Recognition Using the Training Data's Annexation)

  • 백남철;이상협;류광렬
    • 대한토목학회논문집
    • /
    • 제26권3D호
    • /
    • pp.349-352
    • /
    • 2006
  • 자동차 수의 급증으로 야기되는 교통혼잡, 교통사고, 주차난 등의 많은 문제에 효율적으로 대응하기 위해서는 제한된 인력과 비용을 사용하는 자동차 관리가 필수적인데 이를 위한 많은 연구들이 국내외적으로 현재 진행되고 있다. 현재 진행되고 있는 여러 연구 분야 중에서 특히 자동차의 차량번호판인식 기술은 법규위반 차량 식별, 통행료 징수, 자동차세 징수, 도난 도주 차량 확인 및 주차 관리 등의 많은 분야에 응용되고 있다. 자동차의 차량번호판 문자 인식 문제와 같이 훈련예제 수집 비용이 많이 드는 경우에 제한된 수의 훈련예제를 최대한 활용하여 분류성능을 향상시키기 위한 방안의 하나로, 수집된 훈련예제들로부터 가상의 예제를 생성하고, 생성된 가상예제를 훈련예제로 추가하여 학습하는 여러 연구가 수행된 바 있다. 본 논문에서는 차량번호판 문자 인식의 성능 향상을 위해 수집된 예제들을 적절히 병합하여 가상의 예제를 생성하는 방안에 관해 기술하고, 문자인식 분야에서 일반적으로 많이 사용되는 여러 알고리즘에 대하여 다양한 가상예제 생성방안 및 다양한 생성비율에 따른 실험을 통해 그 효용성을 확인한다.

형태학적 정보와 개선된 신경망을 이용한 차량 번호판 인식 (Car Plate Recognition using Morphological Information and Enhanced Neural Network)

  • 김광백
    • 한국정보통신학회논문지
    • /
    • 제9권3호
    • /
    • pp.684-689
    • /
    • 2005
  • 본 논문에서는 수평$\cdot$수직 에지의 형태학적 정보를 이용한 차량 번호판 추출과 개선된 신경망을 이용한 차량 번호판 인식 시스템을 제안한다. 번호판 영역은 수평 수직에지의 형태학적 정보를 이용하여 추출하고 개별 문자는 히스토그램 방법과 위치 정보를 이용한 방법에 윤곽선 추적 알고리즘을 병합하여 추출한다. 개별 문자 인식은 ART-1 알고리즘을 지도 학습 방법과 결합한 개선된 신경망을 제안하여 차량 번호판 인식에 적용한다. 제안된 방법의 성능을 확인하기 위하여 실제 차량 번호판들을 대상으로 실험한 결과, 수평$GF(2^m)$수직 에지의 형태학적 정보를 이용한 차량 번호판 추출 방법이 임계화를 이용한 차량 번호판 추출 방법, RGB와 HSI 컬러 정보를 각각 이용한 차량 번호판 추출 방법보다 추출룰이 개선되었으며, 인식 성능도 개선된 신경망의 학습 알고리즘이 기존의 학습 알고리즘들 보다 우수한 성능이 있음을 확인하였다.

차량 번호판 밝기 제어를 이용한 인식률 개선 방안 (Improvement Method of Recognition Rate Using Brightness Control of Vehicle License Plate)

  • 이광옥;배상현
    • 스마트미디어저널
    • /
    • 제6권3호
    • /
    • pp.57-63
    • /
    • 2017
  • 차량번호인식 개선을 위해서는 무엇보다 양질의 차량이미지를 획득하는 것이 무엇보다 먼저 선행되어야 하는 필수적인 요소이다. 일반적인 도로영상들은 시간, 햇빛, 날씨 등 다양한 환경의 영향을 받아 번호판 밝기가 일률적이지 않고 다양한 형태로 나타나기 때문에 여러 가지 이미지 보정 기능을 거치게 되고 이로 인하여 인식속도 저하, 인식률 저하 등이 나타난다. 따라서, 본 논문에서는 실시간 영상 촬영 시 번호판 주위의 밝기를 측정하여 카메라의 shutter, bright, gain등 이미지 밝기와 품질에 영향을 주는 각 요소를 실시간으로 제어하여 빠르고 선명한 고품질의 차량 이미지 촬영하기 위해 실시간 도로 영상을 통하여 제안된 방법을 테스트 하였다.

지역적 유사도를 이용한 이미지 색상 정보 추출 (Extraction of Color Information from Images using Grid Kernel)

  • 손정우;박성배;김상수;김구진
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2007년도 한국컴퓨터종합학술대회논문집 Vol.34 No.1 (B)
    • /
    • pp.182-187
    • /
    • 2007
  • 본 논문에서는 이미지 상에 나타난 색상 정보를 추출하기 위한 새로운 커널 메소드(Kernel method)인 Grid kernel을 제안한다. 제안한 Grid kernel은 Convolution kernel의 하나로 이미지 상에 나타나는 자질을 주변 픽셀에서 나타나는 자질로 정의 하고 이를 재귀적으로 적용함으로써 두 이미지를 비교한다. 본 논문에서는 제안한 커널을 차량 색상 인식 문제에 적용하여 차량 색상 인식 모델을 제안한다. 이미지 생성시 나타나는 주변 요인으로 인해 차량의 색상을 추출하는 것은 어려운 문제이다. 이미지가 야외에서 촬영되기 때문에 시간, 날씨 등의 주변 요인은 같은 차량이라 하더라도 다른 색상을 보이게 할 수 있다. 이를 해결하기 위해 Grid kernel이 적용된 차량 색상 인식 모델은 이미지를 HSV (Hue-Saturation-Value) 색상 공간으로 사상하여 명도를 배제하였다. 제안한 커널과 색상 인식 모델을 검증하기 위해 5가지 색상을 가진 차량 이미지를 이용하여 실험을 하였으며, 실험 결과 92.4%의 정확율과 92.0%의 재현율을 보였다.

  • PDF

영상분할 기반의 그림자를 이용한 전방 차량 인식 (The Detection of Front Vehicle based-on Image Division Using Shadows)

  • 장희진;김민관;김민철;최태호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.115-116
    • /
    • 2008
  • 최근 급속하게 증가하는 차량과 함께 운전자에게 보다 편리함과 안정성을 제공하기 위하여 첨단 안선 차량(ASV : Advanced Safety Vehicle)에 대한 연구가 활발히 이루어지고 있다. 본 논문에서는 그 중 한 분야인 카메라를 통한 자량 인식으로써, 전방 차량의 그림자를 이용하여 차량을 검출하고자 한다. 실험 절차는 크게 두 가지 단계로 나누어지며, 첫 번째 단계로는, 카메라를 통해 들어오는 도로 영상 이미지를 명도 값을 기반으로 영상을 차례로 분할하여 차량의 그림자를 나타낸다. 두 번째 단계로는, 선행 작업을 통해 얻어진 차량의 수평 그림자 성분을 이미지 안에서 탐색하여 차량의 위치를 검출하게 된다. 이에 제안된 방식을 검증하기 위해 CCD카메라를 이용하여 도로영상을 촬영하고, 컴퓨터 모의실험을 통해 전방차량이 검출됨을 보였다.

  • PDF

도로 동영상에서 차량의 특징요소 검출 (Extraction of the Feature Region of Car in Moving Vehicle Images)

  • 이효종;이훈
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2001년도 추계학술발표논문집 (상)
    • /
    • pp.759-762
    • /
    • 2001
  • 주행차량의 영상으로부터 개별차량이 포함하는 고유정보를 추출하는 과정은 선택된 프레임에 포함된 차량의 위치 및 상태에 의존적이다. 고정된 카메라에 의해 설정된 영상내의 기준을 불규칙적으로 진행하는 개별차량에 동일하게 적용하는 것은 특징요소의 검출과 인식에서 결과의 신뢰성에 영향을 준다. 프레임 선택과정에서는 도로상의 그림자가 차량검출을 어렵게 하는 요소이다. 본 논문에서는 그림자의 영향을 받지 않고 영상내 설정된 범위에 차량이 위치한 프레임을 선택하는 방법과 불규칙적으로 진행하는 개별적인 차량의 기준을 설정하는 방법을 제시하였고, 차량이 포함하는 패턴을 이용하여 특징요소의 위치를 인식하는 방법에 대해 실험하였다.

  • PDF

차량에 장착되어 있는 영상의 전방의 차량 인식 및 추적에 관한 연구 (A Study on Real-time Vehicle Recognition and Tracking in Car Video)

  • 박대혁;이정훈;서정구;김지형;진석식;윤태섭;리혜;허빈;임영환
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2015년도 제52차 하계학술대회논문집 23권2호
    • /
    • pp.254-257
    • /
    • 2015
  • 차량 인식 기술은 운전자에게 차량 충돌과 같은 위험요소를 사전에 인식시키거나 차량을 자동으로 제어하는 기술로 각광 받고 있다. 본 논문에서는 입력 영상에서 차량이 나타날 수 있는 관심 영역을 설정한 다음 미리 학습된 검출기를 통한 Haar-like와 Adaboost 알고리즘으로 차량 후보 영역을 검출하고 중복된 영역을 제거하기 위인식 기술해 클러스터링 기법을 적용하고, 칼만필터로 프레임 영상에서 차량을 추적 하고, 다시 중복된 영역에 대해 클러스터링 기법을 적용하는 방법을 제안하였다.

  • PDF