• Title/Summary/Keyword: 차량동역학제어

Search Result 61, Processing Time 0.028 seconds

A Study on the Haptic Control Technology for Unmanned Military Vehicle Driving Control (무인차량 원격주행제어를 위한 힘반향 햅틱제어 기술에 관한 연구)

  • Kang, Tae-Wan;Park, Ki-Hong;Kim, Joon-Won;Kang, Seok-Won;Kim, Jae-Gwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.12
    • /
    • pp.910-917
    • /
    • 2018
  • This paper describes the developments to improve the feeling and safety of the remote control system of unmanned vehicles. Generally, in the case of the remote control systems, a joystick-type device or a simple steering-wheel are used. There are many cases, in which there are operations without considering the feedback to users and driving feel. Recently, as the application area of the unmanned vehicles has been extended, the problems caused by not considering the feedback are emphasized. Therefore, the need for a force feedback-haptic control arises to solve these problems. In this study, the force feedback-haptic control algorithm considering the vehicle parameters is proposed. The vehicle parameters include first the state variables of dynamics, such as the body side-slip angle (${\beta}$) and yawrate (${\gamma}$), and second, the parameters representing the driving situations. Force feedback-haptic control technology consists of the algorithms for general and specific situations, and considers the situation transition process. To verify the algorithms, a simulator was constructed using the vehicle dynamics simulation tool with CAN communication environment. Using the simulator, the feasibility of the algorithms was verified in various scenarios.

Analytical Model Development of Longitudinal Railway Vehicle (철도차량의 종방향 통합해석모델 검토 및 개발)

  • Kwak Jae-Ho;Choi Kyung-Jin;Shin Yu-Jeong
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.383-386
    • /
    • 2005
  • An integrated analytical model which should have essential dynamics on the longitudinal railway vehicle is developed. The model consists of translational movement, rotational movement, brake actuator, adhesion force between rail and wheel, and brake friction force between wheel and pad. Thus, during the deceleration for stopping, a feedback controller controlling the brake cylinder pressure is designed to improve ride quality and to release friction problems. Through the developed model, the feasibility of controlling the cylinder pressure is verified for the better performances during braking.

  • PDF

Corner Braking Test and Simulation for Development of VDC System (VDC장치 개발을 위한 코너제동 실험 및 시뮬레이션)

  • 이창노;박혁성;김영관
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.2
    • /
    • pp.211-216
    • /
    • 2003
  • The influence of braking force generated by one tire on vehicle dynamics was investigated by simulation and ground test. A 8 d. o. f vehicle model was developed for simulation. And a special device to apply brake pressure to individual wheel was built for vehicle test. As a result of corner braking test on straight driving, the dynamic responses such as yawrate, lateral acceleration and roll angle were produced in the vehicle, which were in a good agreement to the simulation results. This shows that comer braking used in VDC system can control vehicle dynamics to improve controllability and directional stability.

Path Tracking Control of 6X6 Skid Steering Unmanned Ground Vehicle for Real Time Traversability (실시간 주행 안정성 분석을 위한 6X6 스키드 조향 무인 자율 주행 차량의 경로 추종 제어)

  • Hong, Hyosung;Han, Jong-Boo;Song, Hajun;Jung, Samuel;Kim, Sung-Soo;Yoo, Wan Suk;Won, Mooncheol;Joo, Sanghyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.7
    • /
    • pp.599-605
    • /
    • 2017
  • For an unmanned vehicle to be driven on the off-road terrain, it is necessary to consider the vehicle's stability. This paper suggests a path tracking controller for simulation of real-time vehicle stability analysis. The path tracking controller uses the preview distance to track the given trajectory. The disturbance moment is estimated using the yaw moment observer, and this information is used for compensation in the yaw moment control. On a curved path, the vehicle's desired velocity is determined from the curvature of the path. Because the vehicle is equipped with six independent motor driven wheels, the driving torques are distributed on all the wheels. The effectiveness of the path tracking controller is verified using ADAMS/MATLAB co-simulation.

Simulation Integration Technique of a Full Vehicle Equipped with EPS Control System (EPS 제어시스템 장착 승용차의 통합적 시뮬레이션 기법 연구)

  • Jang Bong-Choon;So Sang-Gyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.6 s.183
    • /
    • pp.72-80
    • /
    • 2006
  • Electric Power Steering (EPS) mechanism has become widely equipped in passenger vehicle due to the increasing environmental concerns and higher fuel efficiency. This paper describes the development of concurrent simulation technique and simulation integration technique of EPS control system with a dynamic vehicle system. A full vehicle model interacting with EPS control algorithm was concurrently simulated on a single bump road condition. The dynamic responses of vehicle chassis and steering system resulting from road surface impact were evaluated and compared with proving ground experimental data. The comparisons show reasonable agreement on tie-rod load, rack displacement, steering wheel torque and tire center acceleration. This concurrent simulation capability was employed fur EPS performance evaluation and calibration as well as for vehicle handling performance integration and synthesis.

Development and Verification of the Steering Algorithm for Articulated Vehicles (굴절차량에 대한 조향알고리즘 개발 및 검증)

  • Moon, Kyeong-Ho;Lee, Soo-Ho;Mok, Jai-Kyun;Park, Tae-Won
    • Journal of the Korean Society for Railway
    • /
    • v.11 no.3
    • /
    • pp.225-232
    • /
    • 2008
  • AWS (all wheel steering) is applied to improve the stability and the turning performance. Most automotive cars are mainly controlled by FWS (front wheel steering) system except some cars which are made to improve their stability by using AWS. Articulated vehicles with a pivoting joint for easy turn are difficult to make a sharp turn because of the long body and long wheelbase. Therefore applying AWS to the articulated vehicles is effective to reduce the turning radius. The AWS control method for the articulated vehicles is currently applied to only Phileas vehicles which were developed by APTS. The paper on the design of a controller to guide an articulated vehicle along the path was published but control algorithm for manual driving has not been reported. In the present paper, steering, characteristics of the Phileas vehicles have been analyzed and then new algorithm has been proposed. To verify the AWS algorithm, Commercial S/W, ADAMS was used for validity of the dynamic model and algorithm.

Driving Performance Analysis of a Rear In-wheel Motor Vehicle with Simultaneous Control of Driving Torque and Semi-active Suspension System (후륜 인휠 모터 전기자동차의 구동 및 반능동 현가시스템 동시 제어를 통한 주행 성능 분석)

  • Shin, Sulgi;Choi, Gyoojae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.1
    • /
    • pp.11-17
    • /
    • 2015
  • Recently, the in-wheel motor vehicle is rapidly developed to solve energy exhaustion and environmental problems. Especially, it has the advantage of independently driving the torque control of each wheel in the vehicle. However, due to the weight increase of wheel, the comfort of vehicle riding and performance of road holding become worse. In this paper, to compensate the poor performance, a simultaneous control of the driving torque and semi-active suspension system is investigated. A vehicle model is generated using CarSim Software and validated by field tests. Co-simulation of CarSim and MATLAB/Simulink with control logics is carried out, and it is found that simultaneous control of the driving torque and semi-active suspension system can improve driving stability and durability of the in-wheel motor system.

Lateral Dynamic Model of an All-Wheel Steered Articulated Vehicle for Guidance Control (전차륜조향 굴절차량의 안내제어를 위한 횡방향 동역학 모델)

  • Yun, Kyoung-Han;Kim, Young-Chol;Min, Kyung-Deuk;Byun, Yeun-Sub
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.6
    • /
    • pp.1229-1238
    • /
    • 2011
  • This paper deals with the lateral dynamic model of an all-wheel steered articulated vehicle to design a guidance controller. Nonlinear dynamic model of articulated vehicle is developed by complementing the model about the BRT system of California PATH in U. S. A. and the Phileas system of the APTS in Netherlands. Linear lateral dynamic model has been derived from the nonlinear dynamic model under some assumptions associated with the driving conditions. To design a guidance controller, we derive a transfer function that is steering angle as input and lateral acceleration as output from the linear lateral dynamic model by applying the parameter of vehicle that is developed by Korea Railroad Research Institute. To validate the dynamic model, nonlinear dynamic model has been compared with a vehicle model that has been programmed in ADAMS, and linear dynamic model has been compared with a nonlinear dynamic model under sime assumptions.

Development of HILS System for VDC (VDC를 위한 HILS 시스템 개발에 관한 연구)

  • 박기홍;허승진
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.3
    • /
    • pp.184-191
    • /
    • 2003
  • HILS(Hardware-ln-the-Loop Simulation) is a scheme that incorporates hardware components of primary concern in the numerical simulation environment. Due to its advantages over actual vehicle test and pure simulation, HILS is being widely accepted in automotive industries as test benches for vehicle control units. Developed in this study is a HILS system for VDC(Vehicle Dynamics Control) with a valve control system that modulates the brake pressures at low wheels. Two VDC control logics were developed and tested in the HILS system. Test results under various driving conditions are presented in this paper.

Development of Hardware-in-the-Loop Simulator for EHB Systems (EHB 시스템을 위한 Hardware-in-the-Loop 시뮬레이터 개발)

  • 허승진;박기홍;이해철;김태우;김형수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1139-1143
    • /
    • 2003
  • HILS(Hardware-In-the-Loop Simulation) is a scheme that incorporates hardware components of primary concern in the numerical simulation environment. Due to its advantages over actual vehicle test and pure simulation, HILS is being widely accepted in automotive industries as test benches for vehicle control units. Developed in this study is a HILS system for EHB(Electro-Hydraulic Brake) systems that include a high pressure generator and a valve control system that independently modulates the brake pressures at four wheels. An EHB control logic was tested in the HILS system. Test results under various driving conditions are presented and compared with the VDC logic.

  • PDF