• Title/Summary/Keyword: 찢김에너지 정식화

Search Result 3, Processing Time 0.017 seconds

Tearing Test for Automotive Vibroisolating Rubber and Formulation of Tearing Energy (자동차용 방진고무의 찢김시험 및 찢김에너지 정식화)

  • Moon, Hyung-Il;Kim, Heon Young;Kim, Min Gun;Kim, Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.12
    • /
    • pp.1669-1674
    • /
    • 2012
  • A commonly analytical estimation of fatigue life on rubber components is using fatigue life equation based on various fatigue test results. However, such method has very restricted applicability in actual designing processes because performing fatigue tests requires a lot of time and money. In addition, non-standard rubber materials and their randomness make it hard to make databases. In this paper, the other fatigue life estimation method using tearing energy was suggested. We performed static and dynamic tearing test about automotive vibration rubber materials and a finite element formulation using a virtual crack to calculate the tearing energy of rubber components with complicated shapes. To using the suggested method, fatigue life of an automotive motor mount has been estimated and verified the reliability of this method by using comparison between the estimated values and the actual fatigue life.

Formulation of Tearing Energy for Fatigue Life Evaluation of Rubber Material (고무의 피로수명 평가를 위한 찢김에너지 정식화)

  • Kim, Heon-Young;Kim, Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.8 s.239
    • /
    • pp.1132-1138
    • /
    • 2005
  • Fatigue life of metal material can be predicted by the use of fracture theory and experimental database. Although prediction of fatigue life of rubber material uses the same way as metal, there are many reasons to make it almost impossible. One of the reasons is that there is not currently used fracture criteria for rubber material beacuse of non-standardization, various way of composition process of rubber and so on. Tearing energy is one of the fracture criteria which can be applied to a rubber. Even if tearing energy relaxes the restriction of rubber composition, it is also not currently used because of complication to apply in. Research material about failure process of rubber and tearing energy was reviewed to define the process of fatigue failure and the applicability of tearing energy in estimation of fatigue life for rubber. Also, 1file element formulation of tearing energy which can be used in FE analysis was developed.

On the Grounding Damage of Ship Bottom Stiffened Platings(Part II : Damage Prediction Formula) (좌초시 선저보강판의 손상에 관한 연구(제2보 : 손상추정식))

  • Jeom-Kee Paik;Tak-Kee Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.31 no.4
    • /
    • pp.119-129
    • /
    • 1994
  • The aim of the present study is to derive an empirical formula relating the absorbed energy and the cutting length for longitudinally stiffened steel palates which are cut by a wedge, idealizing the ship bottom stiffened platings in groundings. This study is based on the test results and the investigations of some parameters affecting the cutting response, described in Part I. By dimensionless ana1ysis of the test results obtained in a quasi-static loading condition, the energy absorbed while a longitudinally stiffened plate is cut by a wedge is expressed as functions of the cutting length, the yield stress, the equivalent plate thickness and the wedge angle. Also, the dynamic effects are incorporated into the static formula such that the proposed formula can be applied to the impact loading situations. The validity of the proposed formula is checked by comparing with the results obtained by the other existing formulas or by the drop-hammer tests.

  • PDF