• Title/Summary/Keyword: 찢김계수

Search Result 7, Processing Time 0.022 seconds

Evaluation of Material Properties for Yonggwang Nuclear Piping Systems (III) - Main Steam System - (영광원자력 배관소재의 재료물성치 평가 (III) -주증기계통-)

  • 김영진;석창성;김종욱
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.6
    • /
    • pp.1460-1468
    • /
    • 1995
  • The objective of this paper is to evaluate the material properties of SA106 Gr. C carbon steel and its associated weld manufactured for main steam system of Yonggwang 3,4 nuclear generating stations. A total of 43 tensile and 35 fracture toughness tests were performed and the effects of various parameters such as pipe size, crack plane orientation, test temperature, welding on material properties were discussed. Test results show that the effects of crack plane orientation, test temperature, and welding on fracture toughness were significant while the effects of pipe size, specimen orientation and test temperature on tensile properties were negligible. Especially the dependence of J-R curves on the crack plane orientation appears to be the characteristics of carbon steel.

Evaluation of Material Properties for Yonggwang Nuclear Piping Systems(II) - Safety Injection System- (영광원자력 배관소재의 재료물성치 평가 (II) -안전주입계통-)

  • 김영진;석창성;장윤석
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.6
    • /
    • pp.1451-1459
    • /
    • 1995
  • The objective of this paper is to evaluate the material properties of SA312 TP316 and SA312 TP304 stainless steels and their associated welds manufactured for safety injection system of Yonggwang 3,4 nuclear generating stations. A total of 62 tensile tests and 46 fracture toughness tests were conducted and the effects of various parameters such as pipe size, crack plane orientation, tests were conducted and the effects of various parameters such as pipe size, crack plane orientation, test temperature, welding on material properties were discussed. Test results show that the effect of test temperature on fracture toughness was significant while the effects of pipe size and crack plane orientation on fracture toughness were negligible. Fracture toughness of the weld metal was in general higher than that of the base metal.

Evaluation of Load-Carrying Capacities for Cracked Pipes (균열이 존재하는 배관의 하중 지지능력 평가)

  • Jang, Yun-Seok;Kim, Hyeon-Su;Jin, Tae-Eun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.9
    • /
    • pp.1350-1358
    • /
    • 2001
  • During the last decade, a number of experiments and numerical analyses had been performed in conjunction with the development of simplified analytical methods to estimate the fracture behavior of cracked piping in nuclear power plant. However, the necessity of further investigation for the analytical methods was issued because of the discrepancies with the experimental data. The objective of this paper is to find out the optimum methods to evaluate the load-carrying capacities for cracked pipes. To do this, numerous analytical and finite element analyses were carried out for various pipe and crack geometries and materials. These results were synthesized for crack shapes and can be used as basic data for leak before analyses and risk informed inspections.

On the Grounding Damage of Ship Bottom Stiffened Platings(Part II : Damage Prediction Formula) (좌초시 선저보강판의 손상에 관한 연구(제2보 : 손상추정식))

  • Jeom-Kee Paik;Tak-Kee Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.31 no.4
    • /
    • pp.119-129
    • /
    • 1994
  • The aim of the present study is to derive an empirical formula relating the absorbed energy and the cutting length for longitudinally stiffened steel palates which are cut by a wedge, idealizing the ship bottom stiffened platings in groundings. This study is based on the test results and the investigations of some parameters affecting the cutting response, described in Part I. By dimensionless ana1ysis of the test results obtained in a quasi-static loading condition, the energy absorbed while a longitudinally stiffened plate is cut by a wedge is expressed as functions of the cutting length, the yield stress, the equivalent plate thickness and the wedge angle. Also, the dynamic effects are incorporated into the static formula such that the proposed formula can be applied to the impact loading situations. The validity of the proposed formula is checked by comparing with the results obtained by the other existing formulas or by the drop-hammer tests.

  • PDF

Crack Stability Evaluation of Nuclear Main Stream Pipe Considering Load Reduction Effect (하중감소효과를 고려한 원자력 주증기 배관의 균열 안정성 평가)

  • Koh, Bong-Hwan;Kim, Yeong-Jin;Seok, Chang-Seong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.6
    • /
    • pp.1843-1853
    • /
    • 1996
  • The objective of this paper is to evaluate the crack stability of the nuclear main stresm pipes, considering the load reduction effect due to the presence of circumferential throuth-wall crack. Also, the optimization techniques are adoped tosimulate the crack effect on the elbow component of the piuping system. By using a general beam elemetn which contains a discontinuous cross-section, the piping analysis is accomplished to acquire the reduced load. Considering this reduced load, it is feasible for the LBB application in nuclear main stresm pipe. Also, by combining an optimization program and a genaral finite element analysis program, the appropriate dimensions of the simplified beam elemtn which represents the effect of crack in elbow could be successfully determined.

A Development of Integrity Evaluation System Based on Elastic Plastic Fracture Mechanics(I) - Specimen Cases - (탄소성 파괴역학적 건전성 평가 시스템의 개발 I)

  • 김영진;최재붕;손상환;이주진;허용학
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.3
    • /
    • pp.646-655
    • /
    • 1990
  • A practically useful system for elastic-plastic fracture mechanics analysis has been developed. The developed system is comprised of the deformation plasticity failure assessment diagram(DPFAD) approach and the J-integral/Tearing modulus(J/T) approach. The system contains analysis routines for five types of fracture specimens : compact tension, center cracked tension, single edge craked plate in uniform tension, single edge cracked plate in three point bending and double edge cracked plate in tension. A double interpolation scheme was adopted to interpolate J values from the EPRI developed EPFM handbook and the Newton-Raphson method was used to obtain proper loadings for displacement control conditions. A graphic output system was utilized to present numerical results. Several case studies were performed to evaluate the accuracy and the usefulness of the code. It was found that the J/T approach and the DPFAD approach yielded similar results. However, the DPFAD approach is more convenient for qick assessment of integrity of cracked structures while the J/T approach is more useful in evaluating the full history of the fracture process.

Evaluation of Pressure-Temperature Limit Curve for the Safe Operation of an RFV based on 3-D Finite Element Analyses (유한요소해석을 이용한 원자로용기 압력-온도 한계곡선의 평가)

  • Lee, Taek-Jin;Park, Yun-Won;Lee, Jin-Ho;Choe, Jae-Bung;Kim, Yeong-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.10
    • /
    • pp.1567-1574
    • /
    • 2001
  • In order to operate an RPV safely it is necessary to keep the pressure-temperature (P-T) limit during the heatup and cooldown process. While the ASME Code provides the P-T limit curve for safe operation, this limit curve has been prepared under conservative assumptions In this paper the effects of conservative assumptions involved in the P-T limit curve specified in the ASME Code Sec. XI were investigated. Three different parameters the crack depth the cladding thickness and the cooling rate, were reviewed based on 3-D finite element analyses. Also the constraint effect on P-T limit curve generation was investigated based on J- T approach. It was shown that the crack depth and the constraint effect change the safe region in P-T limit curve significantly Therefore it is recommended to prepare a more precise P-T limit curve based on finite element analysis to obtain P-T limit for safe operation of an RPV.