• Title/Summary/Keyword: 집중 질량

Search Result 194, Processing Time 0.035 seconds

Earthquake Response Analysis of an Offshore Wind Turbine Considering Fluid-Structure-Soil Interaction (유체-구조물-지반 상호작용을 고려한 해상풍력발전기의 지진응답해석)

  • Lee, Jin-Ho;Lee, Sang-Bong;Kim, Jae-Kwan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.16 no.3
    • /
    • pp.1-12
    • /
    • 2012
  • In this study, an analysis method for the earthquake response of an offshore wind turbine model is developed, considering the effects of the fluid-structure-soil interaction. The turbine is modeled as a tower with a lumped mass at the top of it. The tower is idealized as a tubular cantilever founded on flexible seabed. Substructure and Rayleigh-Ritz methods are used to derive the governing equation of a coupled structure-fluid-soil system incorporating interactions between the tower and sea water and between the foundation and the flexible seabed. The sea water is assumed to be a compressible but non-viscous ideal fluid. The impedance functions of a rigid footing in water-saturated soil strata are obtained from the Thin-Layer Method (TLM) and combined with the superstructure model. The developed method is applied to the earthquake response analysis of an offshore wind turbine model. The method is verified by comparing the results with reference solutions. The effects of several factors, such as the flexibility of the tower, the depth of the sea water, and the stiffness of the soil, are examined and discussed. The relative significance of the fluid-structure interaction over the soil-structure interaction is evaluated and vice versa.

Experimental Study on Underwater Transient Noise Generated by Water-Entry Impact (입수 충격 수중 순간 소음에 대한 실험적 연구)

  • Jung, Youngcheol;Seong, Woojae;Lee, Keunhwa;Kim, Hyoungrok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.33 no.1
    • /
    • pp.10-20
    • /
    • 2014
  • To study the water-entry impact noise, on-board experiment using a small launcher firing various objects was performed in the Yellow Sea. As the launcher fires a cylindrical object from the ship vertically, generated noise is measured with a hydrophone on the starboard of Chung-hae, Marine surveyor. Three types of cylindrical objects, which have noses of flat-faced, conical, and hemisphere, were used during the experiment. The measured noise exhibits a time-dependency which can be divided into three phases: (1) initial impact phase, (2) open cavity flow phase, (3) cavity collapse and bubble oscillation phase. In most cases, the waveform of bubble oscillation phase is dominant rather than that of initial impact phase. Pinch-off time, where a cavity begins to collapse, occurs at 0.18 ~ 0.2 second and the average lasting time of bubble was 0.9 ~ 1.3 second. The energy of water-entry impact noise is focused in the frequency region lower than 100 Hz, and the generated noise is influenced by the nose shapes, object mass, and launching velocity. As a result, energy spectral density on the bubble frequency is higher in the order of flat-faced, conical, hemisphere nose, and the increase of initial energy raises the energy spectral density on the bubble frequency in the cylinder body of same shape. Finally, we compare the measurements with the simulated signals and spectrum based on the bubble explosion physics, and obtain satisfactory agreements between them.

Relationship between PM2.5 Mass Concentrations and MODIS Aerosol Optical Thickness at Dukjuk and Jeju Island (제주도와 덕적도에서 관측된 초미세입자(PM2.5) 농도와 MODIS 에어러솔 광학두께와의 관계)

  • Lee, Kwon-Ho;Park, Seung-Shik
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.4
    • /
    • pp.449-458
    • /
    • 2012
  • Using the MODerate resolution Imaging Spectro-radiometer (MODIS) retrieved aerosol optical thickness (AOT) along with ground measurements of PM2.5 mass concentration, we assessed local air quality over Dukjuk and Jeju island and estimated possibility of satellite derived PM2.5 during nine intensive observation periods in 15 October 2005 - 24 October 2007. Averaged PM2.5 mass concentrations showed relatively variable as $25.61{\pm}22.92{\mu}g/m^3$ at Dukjuk and $17.33{\pm}10.79{\mu}g/m^3$ at Jeju. The maximum values of $188.89{\mu}g/m^3$ (Dukjuk) and $50.46{\mu}g/m^3$ (Jeju) were recorded during Asian dust storm day. Similarly, the maximum values of MODIS AOT were found as 3.73 (Gosan) and 1.14 (Jeju). Averaged MODIS AOTs at Dukjuk ($0.79{\pm}0.81$) were larger than that at Jeju ($0.42{\pm}0.24$). An empirical relationship between MODIS AOT and PM2.5 mass was obtained and results show that there was a good correlation between satellite and ground based values with a linear correlation coefficient of 0.85 at Dukjuk. The result clearly demonstrates that satellite derived AOT is a good surrogate for monitoring PM air quality over study area. However, meteorological and other ancillary datasets are necessary to further apply satellite data for air quality research.

Nonlinear Analysis of a Forced Beam with Internal Resonances (내부공진을 가진 보의 비선형 강제진동해석)

  • 이원경;소강영
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1991.04a
    • /
    • pp.147-152
    • /
    • 1991
  • 양단이 고정된 보가 변형할 때에는 중간 평면의 신장을 수반하게 된다. 운동 의 진폭이 증가함에 따라 이 신장이 보의 동적 응답에 미치는 영향은 심각 하게 된다. 이러한 현상은 응력과 변형도와의 관계가 선형적이라 하더라도 변형도와 변위와의 관계식은 비선형이 되며 결국은 보의 비선형 운동방정식 을 낳게된다. 보는 연속계이긴하지만 근사를 위하여 다자유도계로 간주할 수 있다. 비선형 다자유도계에 있어서는 선형화된 계의 고유진동수끼리 적절한 관계를 가질 때 내부공진이 발생할 수 있다. 양단이 고정된 곧은 보의 비선 형 동적응답이 그동안 많이 연구되어 오고 있으며, 집중질량을 가지고 직각 으로 굽은 보의 해석을 위하여 내부공진을 고려한 해석적 혹은 실험적 연구 가 이루어져 왔다. 그중에서도 Nayfeh등은 조화가진 하의 핀과 꺾쇠로 고정 된(hinged-clamped) 보의 정상상태응답을 해석하기 위해 두 모우드 사이의 내부공진을 고려하였다. 이 연구에서는 세 모우드 사이의 내부공진을 고려하 여 강제진행 중인 보의 비선형 해석을 다루고자 한다. 이 문제에 관심을 갖 게 된 동기는 "연속계의 비선형 해석에서 더 많은 모우드를 포함시키면 어 떤 결과를 낳게 될 것인가\ulcorner"라는 질문에서 생겨난 것이다. 갤러킨 법을 이용 하여 비선형 편미분 방정식과 경계 조건으로 표현되는 이 문제를 연립 비선 형 상미분 방정식으로 변환한다. 다중시간법(the method of multiple scales) 을 이용하여 이 상미분 방정식을 정상상태에서의 세 모우드의 진폭과 위상 에 대한 연립비선형 대수방정식으로 변환한다. 이 대수방정식을 수치적으로 풀어서 정상상태 응답을 구하고 Nayfeh등의 결과와 비교한다. 결과와 비교한다. studies, the origin of ${\alpha}$$_1$peak was attributed to the detrapping process form trap with 2.88[eV] deep of injected space charge from the chathode in the crystaline regions. The origin of ${\alpha}$$_2$ peak was regarded as the detrapping process of ions trapped with 0.9[eV] deep originated from impurity-ion remained in the specimen during production process of the material, in the crystalline regions. The origin of ${\beta}$ peak was concluded to be due to the depolarization process of "C=0"dipole with the activation energy of 0.75[eV] in the amorphous regions. The origin of ${\gamma}$ peak was responsible to the process combined with the depolarization of "CH$_3$", chain segment, with the activation energy of carriers from the shallow trap with 0.4[eV], in he amorp

  • PDF

[ HCO+ ]CLOUDS IN THE SGR B2 REGION (SGR B2 지역에 있는 HCO+ 분자운의 특성 연구)

  • Minh Y. C.
    • Journal of Astronomy and Space Sciences
    • /
    • v.21 no.4
    • /
    • pp.233-242
    • /
    • 2004
  • The $HCO^+$ 1-0 transition line was observed toward the Sgr B2 region in our Galactic center. We found that there exist two large-scale velocity structures of $v_{lsr}\;{\sim}50\;and\;{\sim}100kms^{-1}$, which are thought to interact with each other. A new gas clump 'OF28 Cloud'('Odenwald & Fazio FIR 38' Cloud), showing different chemical and kinematical properties with the Sgr B2(M) cloud, was found in the $50kms^{-1}$ gas component. Toward the core of this component, we derive the $HCO^+$ total column density, $N(HCO^+)=(2-5){\times}10^{14}cm^{-2}$ and the mass $M=1{\times}10^6M_{\odot}$, by estimating its size, ${\sim}15pc$, from the half-power width of this component. We also found that there is a highly turbulent component in this region in the velocity range of about $100kms^{-1}$. The column density of this component is $N(HCO^+)=1{\times}10^{13}cm^{-2}$. The $HCO^+$ in this region may form effectively by the reaction between $C^+$ and OH, which are the elements whose abundances increase rapidly in shocked region.

Lumped Mechanical Model of Electromagnetic Floating Mass Transducer Implanted on Human Middle Ear (이소골에 장착된 전자기 플로팅매스 진동체에 대한 집중 질량-스프링 모델의 제안)

  • Seong, Ki-Woong;Kim, Min-Woo;Lee, Jang-Woo;Lim, Hyung-Gyu;Jung, Eui-Sung;Kim, Dong-Wook;Lee, Myung-Won;Lee, Jung-Hyun;Kim, Myoung-Nam;Lee, Kyu-Yeop;Lee, Sang-Heun;Park, Il-Yong;Cho, Jin-Ho
    • Journal of Biomedical Engineering Research
    • /
    • v.30 no.2
    • /
    • pp.162-168
    • /
    • 2009
  • Implantable middle ear hearing devices (IMEHDs) have been widely studied as an alternative hearing aids to solve the problems of conventional hearing aids. Vibration transducer of middle ear hearing aids is a key component because vibration characteristics of transducer is directly involved performance of hearing aids. So, the study about middle ear hearing aids concentrate on the transducers. A floating mass type transducer is most efficient. In this paper, we suggest a lumped mechanical model of electromagnetic floating mass transducer implanted on human middle ear. The proposed model enables analysis of the vibration characteristics of a floating mass transducer and prediction of the variation after implant on ossicle that offers a simple and easy to analyze. The parameters was drawn based on the components and the structures of transducer. The Lumped mechanical model was converted by the electrical-mechanical equivalent model, and simulated using PSpice. So, we investigated vibration characteristics of transducer influenced it's components. And we predict vibration characteristics of stapes footplate due to implanted transducer's vibration using combining model of transducer and human ear. To prove the feasibility of the suggested model, we fabricated a differential floating mass transducer (DFMT) as one of floating mass transducers and performed experiments using the human temporal bones.

Properties of Cenosphere Particle in the Fly Ash Generated from the Pulverized Coal Power Plant (석탄화력 발전소에서 생성되는 석탄회에서 Cenosphere 입자의 특성에 관한 연구)

  • Lee, Jung-Eun;Lee, Jae-Keun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.10
    • /
    • pp.1881-1891
    • /
    • 2000
  • Cenosphere particles of different fly ash formed at the pulverized coal power plant were hollow sphere or filled with small particles inside solid particles. And size was relatively larger than other fly ash particles as well as specific gravity was small to suspend in the water. In this paper, it was demonstrated to contain a variety of morphological particle type, and the physical and chemical properties related to the cenosphere and fly ash particles. Furthermore it was estimated the possibility to reuse the cenosphere particles on the base of cenosphere properties. Cenosphere formation resulted from melting of mineral inclusion in coal, and then gas generation inside the molten droplet. As the aluminosilicate particle was progressively heated, a molten surface layer developed around the solid core. Further heating leaded to cause the formation of fine particles at the core. The mass median diameter(MMD) of cenosphere particles was $123.11{\mu}m$ and the range of size distribution was $100{\sim}200{\mu}m$ with single modal. It was represented that specific density was $0.67g/cm^3$ fineness was $1135g/cm^3$. The chemical components of cenosphere were similar to other fly ash including $SiO_2$, $Al_2O_3$, but the amount of the chemical component was different respectively. In the case of fly ash, $SiO_2$ concentration was 54.75%, and $Al_2O_3$ concentration was 21.96%, so this two components was found in 76.71% of the total concentration. But in the case of cenosphere, it was represented that $SiO_2$ concentration was 59.17% and $Al_2O_3$ concentration was 30.16%, so this two components was found in 89.33% of the total concentration. Glassy component formed by the aluminosilicate was high in the cenosphere, so that it was suitable to use insulating heat material.

  • PDF

Theoretical Analysis of Critical Chloride Content in (Non)Carbonated Concrete Based on Characteristics of Hydration of Cement (시멘트 수화 특성 및 탄산화를 고려한 콘크리트의 임계 염소이온량에 대한 해석 기법)

  • Yoon, In-Seok
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.3
    • /
    • pp.367-375
    • /
    • 2007
  • Critical chloride content for corrosion initiation is a crucial parameter in determining the durability and integrity of reinforced concrete structures, however, the value is still ambiguous. Most of the studies reporting critical threshold chloride content have involved the experimental measurement of the average amount of the total chloride content at arbitrary time. The majority of these researches have not dealt with this issue combined with carbonation of concrete, although carbonation can significantly impact on critical threshold chloride content. Furthermore, the studies have tried to define the critical chloride content within the scope of their experimental concrete mix proportion at arbitrary time. However, critical chloride content for corrosion initiation is known to be affected by a lot of factors including cement content, type of binder, chloride binding, concentration of hydroxyl ions, and so on. It is necessary to define the unified formulation to express the critical chloride content for various mix proportions of concrete. The purpose of this study is to establish an analytical formulation of the critical chloride content of concrete. In this formulation, affecting factors, such as mix proportion, environment, chemical evolution of pore solution with elapsed time, carbonation of concrete and so on are taken into account. Based on the Gouda's experimental results, critical chloride content is defined as a function of $[Cl^-]$ vs. $[OH^-]$ in pore solution. This is expressed as free chloride content with mass unit to consider time evolution of $[OH^-]$ content in pore solution using the numerical simulation programme of cementitious materials, HYMOSTRUC. The result was compared with other experimental studies and various codes. It is believed that the approach suggested in this study can provide a good solution to determine the reasonable critical chloride content with original source of chloride ions, for example, marine sand at initial time, and sea water penetration later on.

Effects of Stiffness Characteristics of Super-Structure on Soil-Structure Interaction (지반(地盤)에 대한 구조물(構造物)의 상대강도(相對剛度)가 지반(地盤)-구조물(構造物) 상호작용(相互作用)에 미치는 영향(影響))

  • Park, Hyung Ghee;Joe, Yang Hee;Lee, Yong Il
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.5 no.1
    • /
    • pp.123-132
    • /
    • 1985
  • The flexibility of base material gives considerable influences on seismic responses of a structure. The effects of relative stiffness between super-structure and base material on dynamic soil-structure interaction are evaluated by parametric studies. Two 5-story buildings are used for the study; one is shearwall structure with relatively higher fundamental frequency and the other is frame structure with relatively lower fundamental frequency. The structures are modeled as beam-sticks coupled with springs and dashpots representing the base material. Dynamic equilibrium equations of the soil-structure interaction system are sloved by mode superposition method using Rosset modal damping values. Soil-structure interaction effect is found to be major concern in seismic analysis of shearwall structure in most cases while it seldom becomes engineering problem in frame-type structure. It is also found that seismic responses at lower elevation of the super-structure are amplified though they decrease at higher elevation as soil-structure interaction effects of the system increase.

  • PDF

Dynamic Characteristics on the CRDM of SMART Reactor (SMART 원자로 제어봉 구동 장치의 동특성해석)

  • Lee, Jang-Won;Cho, Sang-Soon;Kim, Dong-Ok;Park, Jin-Seok;Lee, Won-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.8
    • /
    • pp.1105-1111
    • /
    • 2010
  • The Korea Atomic Energy Research Institutes has been developing the SMART (System integrated Modular Advanced ReacTor), an environment-friendly nuclear reactor for the generation of electricity and to perform desalination. SMART reactors can be exposed to various external and internal loads caused by seismic and coolant flows. The CRDM(control rod drive mechanism), one of structures of the SMART, is a component which is adjusting inserting amount of a control rod, controlling output of reactor power and in an emergency situation, inserting a control rod to stop the reactor. The purpose of this research is performing the analysis of dynamic characteristic to ensure safety and integrity of structure of CRDM. This paper presents two FE-models, 3-D solid model and simplified Beam model of the CRDM in the coolant, and then compared the results of the dynamic characteristic about the two FE-models using a commercial Finite Element tool, ABAQUS CAE V6.8 and ANSYS V12. Beam 4 and beam 188 of simplified-model were also compared each other. And simplified model is updated for accuracy compare to 3-D solid.