• Title/Summary/Keyword: 집열 효율

Search Result 93, Processing Time 0.023 seconds

태양열 구동 흡수식 냉방 시스템 실증

  • Gwak, Hui-Yeol
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.11a
    • /
    • pp.353-362
    • /
    • 2005
  • 태양열시스템은 하절기에 급탕과 난방 부하가 적거나, 거의 없어 시스템의 과열 문제가 야기 될 수 있다. 이를 해결하는 방안 중에 하나로 흡수식 냉방시스템을 이용하여 하절기 잉여열원을 활용하여 냉방하는 방법이 대두되고 있다. 태양열 냉방시스템은 전기에너지를 대체하는 효과 뿐 아니라 태양열 연간 이용 효율 극대화에도 크게 기여 할 수 있다. 본 고에서는 국내 기술로 최초로 개발 실용화된 중온용 단일 진공관형 태양열 집열기와 1중 효용 흡수식 냉방기를 이용하여 실증연구를 계획하였다. 태양열 냉방 실증을 위하여 단일 진공관형 태양열 집열기 집열면적 200m2, 축열조(태양열, 급탕, 냉수), 10RT급 냉방기, 냉각탑, 보조 보일러, 원격 제어 및 모니터링 등이 계획 되었다. 실증시험 중간 결과 태양열 냉방시스템은 하절기 맑은 날 하루 동안 약 5 - 6시간 안정적으로 가동 되었으며, 앞으로 온수급탕, 난방 시험을 거쳐 시스템 성능 및 경제성 평가를 통하여 유용성, 안정성 및 신뢰성이 검증 될 계획이다.

  • PDF

High Temperature Solar Gas Heating by a Compact Fluidized-Bed Receiver of Open-Type (개방형 유동층을 이용한 태양광 고온가스 가열장치의 연구)

  • Choi, Jun-Seop
    • Solar Energy
    • /
    • v.12 no.1
    • /
    • pp.95-102
    • /
    • 1992
  • A small scale solar collector system composed of a Fresnel lens of $0.5m^2$ area as a solar concentrator and a compact fluidized-bed solar receiver was developed. Performance and temperature distribution in the fluidized bed receiver were measured using SiC for particles and air for working fluid. The maximum gas temperature was attained up to 1250K at this moment. In this study, energy efficiency achieved by the present experiment was high for the small scale solar collector system and compact receiver.

  • PDF

Thermal Performance Analysis of Compound Parabolic Collector (CPC) System Employing Storage Tank Through a Year (축열조를 채용한 복합 포물형 태양열 집열기(CPC) 시스템의 연중 열적 성능 해석)

  • LIM, SOK-KYU;JUNG, YOUNG GUAN;KIM, KYOUNG HOON
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.30 no.4
    • /
    • pp.376-383
    • /
    • 2019
  • This paper presents of thermal performance analysis by using mathematical models for a compound parabolic collector (CPC) system employing heat storage tank. The thermal performance including insolation energy, heat loss from collector system, useful energy, collector efficiency, and temperature of storage tank were theoretically investigated through a year using monthly-average meteorological data at Seoul. The simulated results showed that the CPC systems are suitable for the applications of higher temperature than flat plate collector (FPC) systems.

Study on Performance Testing of Concentric Evacuated Tube Solar Energy Collector System (이중진공관형 태양열 집열기의 성능시험에 관한 연구)

  • Yoon, Young-Hwan;Kim, Kyung-Hwan
    • Journal of the Korean Solar Energy Society
    • /
    • v.25 no.2
    • /
    • pp.19-26
    • /
    • 2005
  • Concentric evacuated tube solar energy collector has been interested recently since government has driven to install alternative energy systems in new large building. In this paper, testing of the evacuated tube collector is conducted in outdoor during daytime by transient method. The collector thermal efficiencies are plotted in term of $(T_{in}-T_a)/Ic$, where $T_{in}$ is inlet working fluid temperature, $T_a$ is atmospheric temperature and $I_c$ is solar irradiation on the collector surface. The evacuated tube collector efficiency is ranged from 50% to 63% in real outdoor condition. In addition, the total overall heat loss coefficient is found to have an inverse variation to $(T_{in}-T_a)/I_c$ so that the coefficient becomes very high when $(T_{in}-T_a)/I_c$ is small.

Efficiency of a Direct Absorption Solar Collector using Ag Nanofluids Synthesized by Chemical Reduction Method (화학적 환원법으로 제조된 은나노유체를 사용한 직접흡수식 태양열 집열기의 효율)

  • Lee, Seung-Hyun;Park, Yong-Jun;Choi, Tae Jong;Jang, Seok Pil
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.5
    • /
    • pp.65-72
    • /
    • 2014
  • In this paper, the water-based Ag nanofluids are synthesized by the chemical reduction method and their extinction coefficients are measured by an in-house developed measurement device. The Ag nanofluids are manufactured by the chemical reduction method with the mixing of silver nitrate ($AgNO_3$) and sodium borohydride ($NaBH_4$) in an aqueous solution of polyvinyl pyrrolidone (PVP). The extinction coefficients of Ag nanofluids are measured by means of the in-house developed apparatus at a wavelength of 632.8nm according to the particle volume fractions. The results show that the extinction coefficient of water-based Ag nanofluids increases with the increase of nanoparticle concentrations. Finally, the temperature field and efficiency of direct absorption solar collector (DASC) are analytically estimated based on the measured extinction coefficient of water-based Ag nanofluids. The results indicate that the direct absorption solar collectors using nanofluids have the feasibility to improve the efficiency of conventional flat-plate solar collectors without using an absorber plate.

Uncertainty of Efficiency Equation of Solar Thermal Collectors (태양열 집열기 효율식의 불확도)

  • Lee, Kyoung-Ho;Lee, Soon-Myung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.65.1-65.1
    • /
    • 2010
  • Thermal performance tests of solar thermal collectors include determination of coefficient parameters in an efficiency equation. The parameters can be estimated using regression method to minimize an objective function as sum of differences between measured efficiency data and regressed efficiency equation. However, this conventional approach doesn't consider measurement uncertainties. In this presentation, a method to determine regression parameters in the efficiency equation and uncertainties of the parameters is described with mainly mathematical expressions based on literature reviews. In the method, parameters in the equation for collector efficiency can be determined using regression analysis with a weighting factor in the objective function. The weighting factor can be uncertainties of the differences between measured and fitted efficiencies. To evaluate the approach, performance estimation of a solar collector using the efficiency equation with uncertainties is compared to the result using the conventional efficiency equation by a simulated way for a case in one of previous studies.

  • PDF

High Temperature Solar Gas Heating by a Compact Fluidized-Bed Receiver of Closed-Type (밀폐형 유동층을 이용한 태양광 고온가스가열 장치의 연구)

  • Choi, Jun-Seop
    • Solar Energy
    • /
    • v.12 no.1
    • /
    • pp.88-94
    • /
    • 1992
  • A small-scale solar collector and tracking system, using a Fresnel lens of $0.5m^2$, and novel compact fluidized-bed solar receiver[FBR] of closed type has been developed for high temperature solar gas heating. The FBR was improved in carrying over of SiC powder and thermo-siphon effect. The maximum outlet air temperature of 1140K and the maximum thermal efficiency of 64% were obtained. The present FBR's operated efficiently at extremely high temperatures in comparison with conventional solar receivers, composed of flat or tubular solid surfaces.

  • PDF

Modeling Analysis for Thermal Performance of Solar Flat Plate Collector System Through a Year (평판형 태양열 집열기의 연중 열적 성능의 모델링 해석)

  • Kim, Gew Deok;Park, Bae Duck;Kim, Kyoung Hoon
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.25 no.5
    • /
    • pp.541-549
    • /
    • 2014
  • The monthly-average meteorological data, in particular, the monthly average daily terrestrial horizontal insolation are required for designing solar thermal energy systems. In this paper, the dynamic thermal performance of a flat plate solar collector system is numerically investigated through a year from the monthly average insolation data in Seoul. For a specified data set of solar collector system, the dynamic behaviors of total solar radiation on the tilted collector surfaces, heat loss from the collector system, useful energy and collector efficiency are analyzed from January to December by a mathematical simulation model. In addition, the monthly average daily total solar radiation, useful energy, and daily collector efficiencies through a year are estimated. The simulated results show that the average total radiation is highest in March and the useful energy is highest in October, while the total radiation and the collector efficiency are lowest in July.

The study on the comparison of the operation performance of different type of solar collectors (여러 가지 종류의 태양열 집열기 작동성능 비교 분석 연구)

  • Kim, Huidong;Baek, Namchoon;Lee, Jinkook;Joo, Moonchang
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.64.2-64.2
    • /
    • 2010
  • The objective of this study is to make a comparative study of the operation performance of different type of solar collectors. A flat-plate collector, a single-glazed evacuated collector and a double-glazed evacuated collector are used in this study. These 3 type of collectors are connected in series in the order of a flat-plate collector, a single-glazed evacuated collector and a double-glazed evacuated collector. This experimental facility is a kind of a solar system with a controller, a heat exchanger, a storage tank and a circulation pump. Each collector has a different collection area(flat-plate collector-$6.00m^2$ total area/$5.61m^2$ aperture area, double-glazed evacuated collector-$6.04m^2$ total area/$4.92m^2$ aperture area, single-glazed evacuated collector-$7.65m^2$ total area/$5.61m^2$ aperture area) and its performance characteristic respectively. The experiments have been demonstrated at around $70^{\circ}C$ operating temperature(flat-plate collector inlet temperature). The thermal collecting efficiencies of each collector are obtained under the different insolation and operation condition as a result.

  • PDF

Long-term thermal performance of evacuated tubular solar collector for demonstration system (태양열 실증시스템의 진공관형 태양열 집열기 장기 열성능)

  • Lee, Ho;Joo, Hong-Jin;Yoon, Eung-Sang;Kim, Sang-Jin;Kwak, Hee-Youl
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.04a
    • /
    • pp.104-110
    • /
    • 2008
  • This paper presents demonstration study results derived through field testing of a part load solar energized cooling system for the library of a cultural center building located in Gwangju, Korea. First operating demonstration system was set up in Gwangju in 2005. These system comprises the $200m^2$ evacuated tubular solar collector, a $6m^3$ heat storage tank. In a 2006, daily average of insolation showed about $506W/m^2$, the solar collector efficiency was 44%. In a 2007, daily average of insolation showed about$507W/m^2$, the solar collector efficiency was 42%. As a result, evacuated tubular solar collector kept the high efficiency for two years.

  • PDF