• 제목/요약/키워드: 집열기

검색결과 237건 처리시간 0.023초

평판형 액체식 집열기 의 각종 변수 가 집열기 의 열성능 에 미치는 영향 (A Study of Parametric Effects on the Thermal Performance of Flat-Plate Liquid-Heating Solar Collectors)

  • 전문헌;윤석범;추교명
    • 대한기계학회논문집
    • /
    • 제8권2호
    • /
    • pp.145-153
    • /
    • 1984
  • 본 연구에서는 먼저 집열기의 열성능에 관한 가장 전형적인 Hottel-Whillier- Bliss의 모델을 사용하여 모의 실험을 수행하였다. 모의 실험에 사용한 집열기의 주 요 변수는 덮개 유리의 수(N), 집열판의 방사율(.epsilon.$_{p}$), 집열판의 흡수율(.alpha.$_{p}$T),집열기 단위 면적당의 유량(G), 집열기 단열재의 $L_{b}$/ $K_{b}$, 집열기 경사각 (S),일사량(I) 등이며 이들 집열기 변수의 대표치(typical values)를 중심으로 각 변 수의 값을 변화시켜서 여기에 따른 집열기 효율 곡선의 변화를 조사하였다. 모의 실 험결과와 비교하고, 모의 실험에 사용한 수학적 모델이 집열기의 열성능을 평가하는 데에 적합한가를 확인하고, 운전중에 인위적으로 그 값을 조절할 수 있는 운전 변수중 특히 유량(G)의 변화에 따른 집열기 효율변화와 최적유량의 범위를 동시에 실험적으로 조사하기 위하여, 액체 가열식 집열기 시험장치의 회로를 보완하여 실제 태양 아래에 서 실험을 수행하였다.

모듈화된 신형저가 고효율 평판형 태양열 집열기 개발

  • 이동원
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2005년도 제17회 워크샵 및 추계학술대회
    • /
    • pp.373-380
    • /
    • 2005
  • 알루미늄 재질의 찬넬을 흡열판으로 이용하는 평판형 태양열 집열기를 개발하였다. 이러한 흡열판은 찬넬 내부 전체로 전열매체가 흐르기 때문에 집열기의 열적성능을 향상시킬 것으로 예상되며, 모듈화되어 있어 제작 및 설치가 기존 흡열판보다 용이하다는 장점이 있다. 제작된 찬넬형 평판형 태양열 집열기에 대한 집열효율 시험을 수차례 수행하면서 성능을 개선시키고 있으며, 그 결과 기존 상용화된 집열기 수준의 우수한 열적성능을 갖는 것으로 나타났다. 알루미늄 재질 흡열판 외에 플라스틱 재질의 찬넬형 흡열판도 적용하였으며, 기타 실용화 및 성능 향상에 필요한 요소들에 대해 연구하였다.

  • PDF

태양열(太陽熱) 집열기(集熱器) 출구온도(出口温度) 예측방정식(豫測方程式) (Prediction Equation of Solar Collector Outlet Air Temperature)

  • 문성홍
    • Journal of Biosystems Engineering
    • /
    • 제10권1호
    • /
    • pp.48-53
    • /
    • 1985
  • 농산물 건조를 위하여 평판형 태양열 집열기를 이용할 경우 가열된 출구공기는 각종 농산물건조적온보다 일반적으로 고온이므로 이의 조절을 위한 출구공기 온도의 예측이 중요시 된다. 본 연구에서는 차원해석법(dimensional analysis)을 이용하여 평판형 집열기의 출구에서 나오는 가열된 공기의 온도를 예측하는 방법이 제시되었으며, 이 방법을 이용하여 집열기의 출구공기온도 예측방정식들이 유량별로 유도되었다. 이 방정식들로부터 구한 출구온도들은 실측한 값들과 잘 일치하였으며($R^2$=0.917~0.957) 또한 집열기의 효율을 나타내는 이론식이 출구공기온도 예측방정식으로 부터 직접 유도되었다.

  • PDF

평만형 태양열 집열기 를 설치한 자연 순환식 급탕시스템 의 성능 에 관한 연구 (Performance of Natural Circulation Hot Water System with Flat-Plate Solar Collectors)

  • 윤석범;전문헌
    • 대한기계학회논문집
    • /
    • 제9권5호
    • /
    • pp.579-589
    • /
    • 1985
  • 본 논문의 모의 실험에 사용한 자연순환식 급탕 시스템과 지금까지 발표된 것 과의 차이점은 다음과 같다. 집열기의 집열성능 계산에 Close의 모델은 시스템의 평 균 온도를 이용하였으며, Mertol의 모델은 집열기의 성능을 일정하게 하여 자연순환식 급탕 시스템의 성능을 계산하였다. 그리고, Young의 모델은 집열기 입구 및 출구 유 체의 평균 온도로 집열기의 집열 성능을 계산하였다. Shitzer, Ong의 연구에서 밝혀 진 바와 같이 집열기 집열판의 온도와 유체 온도는 서로 다르므로, 본 논문에서는 이 것들에서 오는 오차를 줄이기 위해 집열기 순환 유체의 평균 온도와 집열판의 온도를 해석적으로 구하여 집열기의 성능과 순환 유체의 성질 계산에 이용하였다.

태양열 이용 냉난방 공조시스템중 평판형 집열기의 동계 상부 열손실 해석 (Analysis of the Top Loss Coefficient for Flat Plate Collector in a Solar Air-Conditioning System during Winter)

  • 김보철;최광환;금종수;김종렬
    • 태양에너지
    • /
    • 제18권3호
    • /
    • pp.15-24
    • /
    • 1998
  • 태양열 집열기의 열손실은 크게 3가지 즉 상부 열손실, 하부 열손실, 측부 열손실로 대별되나 단열이 양호한 집열기에서는 일반적으로 측면으로의 열손실은 무시한다. 측부 열손실을 제외한 두 열손실 중에서도 상부 열손실은 집열기의 대부분의 열손실을 차지하는 지배적인 요소이다. 따라서 태양열 집열기의 집열 성능을 정확하게 파악하기 위해서는 상부 열손실 계수를 정확하게 계산할 필요가 있다. 본 연구에서 사용한 평판형 태양열 집열기(재생기)는 하계에는 제습 및 냉방을 행하고 동계에는 난방을 행하는 전천후 집열판으로 제작되었다. 따라서 장치의 전환없이 겨울에 난방용으로 사용하였을 경우의 집열 성능을 파악하기 위하여 옥외에서 실험을 하였다. 동계 기간 실험을 통하여 본 집열기의 상부 열손실 계수는 약 $3{\sim}4.5W/m^2^{\circ}C$임을 알 수 있었다. 그리고 집열표면에 선택흡수막을 입혀서 난방용으로 사용하면 주위와의 복사 열손실을 크게 줄일 수 있기 때문에 본 집열기의 집열 성능을 향상시킬 수 있을 것으로 사료된다.

  • PDF

태양열을 이용한 냉방장치 -급수식 냉동기를 중심으로-

  • 하재현;이상천
    • 기계저널
    • /
    • 제17권1호
    • /
    • pp.23-27
    • /
    • 1977
  • 태양열을 냉방에 이용하기 위한 시스템은 집열기,열교환기,냉동기 등으로 구성된다. 집열기는 난 방시와 마찬가지로 볼 때 냉난방을 병용하는 집열기를 사용하면 유리하다. 열교환기는 집열기에 서 수집한 열을 냉방기에 전달시키는 기능을 가지는데 용도에 따라 이것을 사용하지 않는 경우도 있다. 냉동기로는 보통 흡수식 냉동기를 사요하나 그외 개방식, 분사식 등의 냉동기도 사용된다. 그러나 분방식 냉동기는 취급은 용이하나 흡수제의 재생조건이 까다로워 높은 습기를 갖는 경우 재생온도가 역시 높아져야 하므로 우리나라의 경우에는 여름철의 습도가 높기 때문에 재생온도가 높아져야 하므로 태양열 냉방에는 부적당하다. 또 분사식 냉동기의 경우 성적계수(Coefficient of Performance) 가 다른 냉동기에 비해 낮고 증기압력이 낮으면 이것이 극히 낮아지기 때문에 태양 열 냉방에 많이 사용하지 않는다. 그래서 태양열 냉방에 있어서 냉동기는 거의 흡수식을 사용하 고 있으며, 여기에서도 주로 흡수식 냉동기를 사용한 냉방에 대하여 논하고져 한다.

  • PDF

비유리식 진공관형 태양열 집열기의 설계 및 제작 (Design and Fabrication of a Nonglass Solar Vacuum Collector)

  • 오승진;현준호;김남진;이헌주;이윤준;천원기
    • 한국에너지공학회:학술대회논문집
    • /
    • 한국에너지공학회 2007년도 추계학술 발표회
    • /
    • pp.181-186
    • /
    • 2007
  • 본 논문은 현재 국내 외적으로 널리 공급되고 있는 유리식(glass) 진공관형 태양열 집열기를 대체할 수 있는 비유리식(non-glass) 진공관형 태양열 집열기의 설계 및 제작에 관한 실험적 내용을 소개하고 있다. 비유리식 진공관형 태양열 집열기는 유리식에 비해 그 내구성이 탁월할 뿐 아니라 적용성도 뛰어나지만 비유리식 집열기는 유리식 집열기와 달리 외부공기 입자의 진공관 내부로의 확산을 억제하거나 그 내부의 진공도 유지를 위해 특수 설계를 하여야 하며 아울러 소재의 특성을 최대한 살릴 수 있는 응용 기술의 개발을 필요로 한다. 이를 위하여 진공관 내부의 일정한 진공도 유지를 위해 집열기와 별도로 설치된 Vacuum Chamber를 진공관과 튜브(vacuum connector)로 연결하여 진공관 내의 outgasing이 가능하도록 할 수도 있으며, 진공관 외피에 공기의 침투를 억제하기 위한 gas barrier coating을 고려할 수도 있다. 본 논문에서 소개하는 비유리식(non-glass) 진공관형 태양열 집열기는 기계, 화공, 재료 등 다양한 분야의 원천 기술을 복합적으로 적용한 것으로 기존의 유리식에 비해 설계 및 제작에 있어서 다소 복잡한 양상을 띠고 있다.

  • PDF

나노유체를 이용한 평판형 태양열 집열기의 효율에 관한 연구 (Study on Efficiency of Flat-Plate Solar Collector Using Nanofluids)

  • 이승현;장석필
    • 대한기계학회논문집B
    • /
    • 제37권9호
    • /
    • pp.799-805
    • /
    • 2013
  • 본 논문에서는 나노유체를 사용한 평판형 집열기의 효율을 예측하기 위한 이론적인 연구를 수행하였다. 평판형 태양열 집열기 내부의 온도분포에 관한 해석적 해를 구하기 위해 무차원화된 2 차원 열 확산방정식을 풀었으며, 이 과정에서 흡광계수와 복사강도는 파장에 독립적이라고 가정하였다. 이렇게 주어진 식을 바탕으로, 물-기반 단일벽 탄소나노혼 나노유체를 작동유체로 사용할 경우 나노입자의 부피비, 열손실의 크기, 집열기의 높이에 따른 무차원 온도분포를 파악해 보았다. 마지막으로 나노유체 기반 평판형 집열기의 효율을 예측해 본 결과 일정 형상조건 이내에서 나노유체 태양열 집열기가 기존 집열기 보다 높은 효율을 가질 수 있음을 파악하였다.

액체식 태양열 집열기의 열성능 평가시험 루우프 설계 (A Thermal Performance Test Loop Design for Liquid - Heating Solar Collectors)

  • ;전문헌;차기철
    • 대한기계학회논문집
    • /
    • 제7권1호
    • /
    • pp.110-121
    • /
    • 1983
  • ASHRAE 표준을 참고로 하여 한국과학기술원(KAIST)에서 수정한 집열기 시험 장치의 주요부품 의 설계도면 및 Specification 등을 제시하였다. 또한 ASHRAE 표준 시험 절차를 재분석하고 KAIST에서 수정한 Test Loop를 시험하기 위한 실험절차의 개요도 설명하였다. ASHRAE 표준 상의 가장 중요한 실험인 (1) 집열기 시간 상수 실험과 (2) 수직에 가까운 입사각에 대한 효율 실 험 및 (3) 입사각 수정 계수 실험 등을 실제 태양 아래에서 실험하여 그 결과도 그림으로 제시하 였다. 본 연구를 통해서 얻은 결과로부터 다음과 같은 결론을 얻을 수 있었다. 한국 과학 기술원 에서 설계한 집열기 시험 장치는 ASHRAE의 표준 절차에 따라 액체 가열식 집열기의 열효율을 측정하기 위한 실용적 장치임을 알 수 있다. 일반적으로 ASHRAE 표준 93-77은 합리적인 절차 라고 할 수 있다. 그러나, 최소일사량 규정(즉 630W/m$^{2}$ 미만이 되어서는 안된다고 하는 ASHRAE 규정) 같은 것은 일사량이 적은 기후 조건하에서는 다소 하향 조정하여도 정확한 효율 곡선을 얻을 수 있다고 하겠다.

태양열 집열기 효율곡선에 대한 연구 (The Study of The Collector Efficiency Curve)

  • 신정철
    • 에너지공학
    • /
    • 제23권3호
    • /
    • pp.198-202
    • /
    • 2014
  • In the solar heat collection system, we can determine how the collector will perform under specific conditions from the efficiency curve. By understanding the basic principles which govern the operation, designers can maximize the output from the collector. Absorptance, transmission and the total heat transfer coefficient were introduced to induce this efficiency curve. Designers who can make use of the implicit information on the curve in this report will generate systems which obtain the best return from their client's investment.