• Title/Summary/Keyword: 집광형태양전지

Search Result 6, Processing Time 0.021 seconds

Using the Loss parameter calculation method for the CPV system simulation (손실파라미터계산방법을 이용한 집광형태양광발전시스템 시뮬레이션)

  • Lee, Kang-Yeon;Jeong, Byeong-Ho;Kim, Ji-won
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.8
    • /
    • pp.17-26
    • /
    • 2017
  • CPV system is composed with CPV cells, modules, PCS(power conditioning system), solar tracker, system installation and balance of systems(BOS). Mention about modelling method which is applied for CPV system simulation and evaluation system analysis. This paper focuses on CPV system modeling and optimal design of the electric energy production analysis through the development of proposed optimal CPV system simulation. Calculated simulation results of the generalized CPV system in regard to loss parameter calculation method can make out optimal configuration of CPV system with high reliability and stability. The loss parameter calculation method establish a mathematical modeling for the purposed of simulation and utilization various data for economical analysis of the CPV system design.

Fresnel lens-DCPC-concentrating solar cell-heat sink type solar module (Fresnel 렌즈-DCPC-집광형태양전지-방열판형 solar module에 관한 연구)

  • 송진수
    • 전기의세계
    • /
    • v.30 no.10
    • /
    • pp.655-661
    • /
    • 1981
  • The concentrating solar module with high concentration ratio(320)has been studied.in this paper. The solar module was composed of the EMVJ solar cell, (Fresnel Lens-DCPC)concentrator and heat sink, and was measured by using the PASTF system. The experimental result and the result analysis for the individual item of the module were as f ollows; (1) The conversion efficiency of the module was 8.3%. (2) The optical efficiency of the concentrator was 46.5% (DCPC; 84.8%, Fresnel Lens; 54.8%). (3) The thermal loss of the solar cell was 4.9%. And methods for the further improvement of the concentrating solar module efficiency have been suggested.

  • PDF

The effects of low temperature Ge buffer layers on the growth of pure Ge on Si(001)

  • Sin, Geon-Uk;Yang, Chang-Jae;Lee, Sang-Su;Yun, Ui-Jun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.132-132
    • /
    • 2010
  • 3-5족 화합물 반도체는 직접천이형 반도체이며, 여러가지 우수한 특성으로 인하여 고효율의 태양전지물질로 각광을 받고 있다. 또한 3중접합 구조를 이용한 집광형태양전지의 경우, 40% 이상의 높은 효율을 보인다고 보고 되고 있다. 이러한 고효율 태양전지를 실리콘 기판위에 성장할 경우, 대면적에서의 태양전지제작이 가능해지며, 단가절감이 가능할 것이라고 예상된다. 하지만, 하부셀로 사용되는 게르마늄과 실리콘의 4.2%의 격자상수차이로 인하여, 고품질의 게르마늄 박막을 실리콘 기판위에 성장하는 데에 있어서 많은 문제점이 있으며, 이러한 문제점을 극복하기 위하여, 저온에서 성장한 게르마늄 박막을 완충층으로 사용하는 2단계 성장법이 제안되었다. 하지만, 2단계 성장법에서 저온 완충막의 성장조건이 게르마늄 박막에 미치는 영향은 명확하지 않다. 본 연구팀은 초고진공 화학기상증착법을 이용하여 순수 게르마늄 박막을 실리콘 기판 위에 성장하였으며, 저온 완충막의 두께를 20 nm에서 120 nm까지 변화시켜서, 완충막의 두께가 게르마늄박막에 미치는 영향에 대해서 연구해 보았다. 그 결과, 40 nm이하의 두께를 갖는 완충막을 사용할 경우, 박막 내부에 실리콘 게르마늄을 형성하면서, 거친 표면이 형성되었다. 반면에, 40 nm보다 두꺼운 완충막을 사용할 경우 평탄한 표면을 갖는 순수게르마늄박막이 형성되었다. 이를 통해서, 순수 게르마늄박막 성장을 위해서는 일정 두께 이상의 저온 완충막이 사용되어야함을 알 수 있었다. 또한 게르마늄박막의 관통 전위 밀도를 분석해 본 결과 완충막의 두께가 80 nm까지 두꺼워짐에 따라서 초기에는 관통전위밀도가 $1.2\;{\times}\;10^6\;cm^{-2}$ 까지 감소하는 경향을 보였으나, 완충막의 두께가 더욱 증가할 경우 관통전위밀도가 증가하였다. 이러한 결과를 바탕으로 저온 완충막의 두께를 조절함으로써 최적화된 게르마늄의 성장이 가능함을 확인할 수 있었다.

  • PDF

Output Power Characteristics of CPV Solar Cell due to Non-uniform Illumination (고집광 태양전지의 비균등 조사에 의한 출력특성)

  • Shin, Goo-Hwan;Ryu, Kwang-Sun;Cha, Won-Ho;Myung, Noh-Hoon;Kim, Young-Sik;Kang, Gi-Hwaw
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.04a
    • /
    • pp.269-274
    • /
    • 2011
  • A solar cell is primary parts to produce electrical energy from the Sun. And, we can utilize those solar cells as a power generation system in home, factory, and so on. In order to make proper power, the solar cells are configured in series and parallel lay down. In condition of uniform illumination, the solar array will produce an enough power by photovoltaic effects from the solar cells. In case of non-uniform illumination on the solar cells, the power will be dramatically decreased compared to design. Fortunately, there were so many research outputs regarding the illumination effects on solar array. In this work, we tried to find out the non-uniform effects on unit CPV solar cell, because there were no research outputs for unit CPV solar cell considering illumination. The CPV solar cell was used in CPV system to make a power by the Sun. We chosen the triple junction solar cell of GaAsInP2Ge for simulation, which has a 30 % of conversion efficiency. By simulation, we obtained the output performance of CPV solar cells in condition of various illumination by using Hamming Window function. Its performance was degraded by 10 % to 50 % depending illumination conditions.

  • PDF

Simulation of Characteristics of Lens and Light Pipe for High Concentration Solar PV System (고집광 태양광 발전을 위한 렌즈 및 광 파이프 특성 시뮬레이션)

  • Ryu, Kwnag-Sun;Shin, Goo-Hwan;Cha, Won-Ho;Myung, Noh-Hoon;Kim, Young-Sik;Chung, Ho-Yoon;Kim, Dong-Kyun;Kang, Gi-Hwan
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.04a
    • /
    • pp.282-286
    • /
    • 2011
  • The artificial increase in the solar intensity incident on solar cells using lenses or mirrors can allow solar cells to generate equivalent power with a lower cost. In application areas of Fresnel lenses as solar concentrators, several variations of design were devised and tested. Some PV systems still use commercially available flat Fresnel lenses as concentrators. In this study, we designed and optimized flat Fresnel lens and the 'light pipe' to develop 500X concentrated solar PV system. We performed rigorous ray tracing simulation of the flat Fresnel lens and light-pipe. The light-pipe can play imporatant roles of redistributing solar energy at the solar cell and increase the mechanical tolerance so that it can increase the lifetime of the high-concentration solar PV system and decrease the cost of manufacturing. To investigate the sensitivity of the solar power generated by the concentrated solar PV according to the performance of lens and light pipe, we performed raytracing and executed a simulation of electrical performance of the solar cell when it is exposed to the non-uniform illumination. We could conclude that we can generate 95 % or more energy compared with the energy that can be generated by perfectly uniform illumination once the total energy is given the same.

  • PDF

Performance Analysis of CPV Modules for Optimizing Secondary Optical Elements (CPV모듈의 2차 광학계 특성에 따른 성능분석)

  • Park, Jeom-Ju;Jeong, Byeong-Ho;Park, Ju-Hoon;Lee, Kang-Yeon;Kim, Hyo-Jin
    • Journal of the Korean Solar Energy Society
    • /
    • v.40 no.5
    • /
    • pp.23-34
    • /
    • 2020
  • Concentrator photovoltaic (CPV) system consists of high-quality complex optical elements, mechanical devices, and electronics components and can have the advantages of high integration and high-efficiency energy sources. III-V compound semiconductor cells have proven performance based on high reliability in the aerospace field, but have characteristics that require absolute support of the balance of systems (BOS) such as solar position trackers, receivers with heat sinks, and housing instruments. To determine the optimum parameters of secondary optical elements (SOEs) design for CPV systems, we designed three types of CPV modules, classified as non-SOEs type, reflective mirror type, and CPC lens type. We measured the I-V and P-V characteristics of the prototype CPV modules with the angle of inclination varying from 0° to 12° and with a 500-magnification Fresnel lens. The experimental results assumed misalignment of the solar position tracker or module design of pinpoint accuracy. As a result, at the 0° tilt angle, the CPC lens produced lower power due to the quartz transmittance ratio compared to that by other SOEs. However, for tilt angles greater than 3°, the CPC lens type module achieved high efficiency and stability. This study is expected to help design high-performance CPV systems.