• Title/Summary/Keyword: 질병예측

Search Result 368, Processing Time 0.03 seconds

Prediction of Cardiovascular Diseases using Wireless Transmission of Blood Pressure Data (혈압데이터 무선전송에 의한 심혈관질환의 예측시스템 구축)

  • 김태운;고창성;송종관;김법영
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2000.04a
    • /
    • pp.243-249
    • /
    • 2000
  • 본 연구의 목적은 휴대폰이나 무선호출기가 가진 양방향 데이터 전송기술을 활용하여 혈압자료를 주기적 혹은 수시로 송신하고 개인별로 축적된 건강관련데이터를 이용하여 혈압과 관련된 심혈관 질환을 예측하는 시스템을 개발하고자 한다. 본 시스템은 크게 5가지 모듈로 구성되어 있다. 첫째는 가정용 혈압측정기에 무선 데이터 전송 기능이 부가된 혈압측정 및 전송장비이다. 둘째는 무선데이터 송수신을 위한 데이터 전송과 관련된 시스템을 구축하는 부분이다. 셋째는 수신된 개인별 혈압 데이트를 DB화하고 이를 자동으로 검사하여 혈압 이상변동 여부를 수시로 확인하고, 필요시 본인에게 경고 메시지를 보내어서 담당의사와 상의하거나 병원에 가서 정밀진단을 받도록 사전에 건강 이상상태를 경고해 주는 조기경보시스템이다. 넷째는 의사의 전문지식과 개인별 혈압자료를 기초로 하여 인터넷 상에서 스스로 심혈관 관련 질병을 진단해 볼 수 있는 인터넷 기반 심혈관 질병 진단 시스템의 구축이다. 다섯 번째로는 이러한 모든 기능이 복합된 전체 시스템을 통합하고 각 부분을 연결하는 시스템 인터페이스 및 사용자가 아주 쉽게 사용할 수 있도록 하는 사용자 인터페이스 부분이다. 본 논문에서는 이를 위한 전체 시스템의 프레임웍을 제시하고 혈압과 의사의 전문지식에 기초한 심혈관 질병 진단 전문가 시스템에 대하여 구축하고자 한다.

  • PDF

Research on Disease Prediction and Health Supplement Recommendation Algorithm Based on KNN Algorithm (KNN 알고리즘을 기반으로 하는 질병 예측 및 건강기능식품 추천 알고리즘에 관한 연구)

  • Yong-Ju Chu
    • Smart Media Journal
    • /
    • v.13 no.8
    • /
    • pp.49-57
    • /
    • 2024
  • In this paper, we propose an algorithm that can recommend personalized health functional foods considering diseases due to the high interest in health functional foods and the development of machine learning as society enters an aging phase. By applying the KNN algorithm, we presented a foundational framework for a platform for personalized health functional food recommendations through disease analysis, matching techniques of publicly available health functional food information, and national public data. To ensure reliable matching between diseases and health functional foods, we analyzed correlations, assessed the appropriateness and accuracy of variables for enhancing the KNN algorithm, and derived improvement directions for the proposed system through the improvement of learning models and information to be disclosed in the future.

Development of epidemic model using the stochastic method (확률적 방법에 기반한 질병 확산 모형의 구축)

  • Ryu, Soorack;Choi, Boseung
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.2
    • /
    • pp.301-312
    • /
    • 2015
  • The purpose of this paper is to establish the epidemic model to explain the process of disease spread. The process of disease spread can be classified into two types: deterministic process and stochastic process. Most studies supposed that the process follows the deterministic process and established the model using the ordinary differential equation. In this article, we try to build the disease spread prediction model based on the SIR (Suspectible - Infectious - Recovered) model. we first estimated the model parameters using least squared method and applied to a deterministic model using ordinary differential equation. we also applied to a stochastic model based on Gillespie algorithm. The methods introduced in this paper are applied to the data on the number of cases of malaria every week from January 2001 to March 2003, released by Korea Centers for Disease Control and Prevention. As a result, we conclude that our model explains well the process of disease spread.

Predicting Transmembrane $\beta$-barrel membrane protein with HMM (HMM을 이용한 단백질 $\beta$-barrel 막횡단 부위 예측)

  • 안창신;유성준;박현석
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.10b
    • /
    • pp.802-804
    • /
    • 2003
  • 2000년대 초 인간 지놈 프로젝트의 완성으로 새로운 포스트-지놈 시대를 맞이하여, 유전자에 대한 해독보다는 인간의 모든 대사와 질병에 직접관여 하고 있는 단백질의 구조와 기능에 대해 많은 관심과 연구가 이루어지고 있다. 특히, 특정 단백질들은 암과 같은 불치병에 직접관여 하고 있으므로 이러한 단백질들의 기능과 구조에 대한 예측 성능의 향상은 새로운 신약 개발에 큰 도움이 될 것이다. 본 논문은 기계학습(Machine Learning)의 한 분야인 HMM(Hidden Markov Model)을 이용하여 $\beta$-barrel 형태로 막횡단하는 단백질의 특성과 기능으로부터 막횡단하는 부위가 존재하는지 여부를 예측하는 프로그램을 구현했다.

  • PDF

Predicting Transmembrane $\alpha$-helix protein with SVM and HMM (SVM과 HMM을 이용한 $\alpha$-Helix 막횡단 단백질 예측)

  • 송철환;유성준;김민경;설영주
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.10b
    • /
    • pp.817-819
    • /
    • 2003
  • 현재 바이오인포매틱스(Bioinformatics) 분야에서 가장 중요한 부분 중의 하나는 유전자 및 단백질의 구조와 기능을 정확하게 예측하는 것이다. 이는 질병 치료 및 신약개발에 유용하여 이로부터 나온 결과로부터 경제적 산업적 효과를 기대할 수 있다. 이 논문에서는 기계학습(Machine Learning)의 한 분야인 SVM(Support Vector Machine)과 HMM(Hidden Markov Model)를 결합하여 단백질의 막횡단(Transmembrane) $\alpha$-Helix 단백질 지역을 예측하는 새로운 알고리즘을 개발, 구현 및 실험하였다. 그 결과 이 두 가지 알고리즘이 결합된 방식을 사용함으로써 성능을 향상 시킬 수 있음을 증명했다.

  • PDF

Estimation of the steps of cardiovascular disease by machine learning based on aptamers-based biochip data (기계학습에 의한 압타머칩 데이터 기반 심혈관 질환 단계의 예측)

  • Kim Byoung-Hee;Kim Sung-Chun;Zhang Byoung-Tak
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.06a
    • /
    • pp.85-87
    • /
    • 2006
  • 압타머칩은 (주)제노프라에서 개발한 새로운 개념의 바이오칩으로서, 압타머(aptamer)를 이용하여 혈액중의 특정 단백질군의 상대적인 양의 변화를 측정할 수 있으며, 질병 진단에 바로 응용할 수 있는 도구이다. 본 논문에서는 압타머칩 데이터 분석을 통해 심혈관 질환 환자의 질병 진행 단계를 예측할 수 있음을 보인다. 정상, 안정/불안정성 협심증, 심근경색의 네 단계로 표지된 환자의 혈액 샘플로부터 제작한 (주)제노프라의 3K 압타머칩 데이터를, 일반 DNA 마이크로어레이 분석과 동일한 과정을 거쳐 분류한 결과, 각 단계별 환자샘플이 확연히 구분되는 것을 확인하였다. 분산분석 결과 P-Value를 이용하여 자질 선택을 수행하고, 분류 알고리즘으로는 신경망, 결정트리, SVM, 베이지안망을 적용한 결과. 각 알고리즘별로 50대 남성환자 31개의 샘플에 대하여 $77{\sim}100%$의 정확도로 심혈관 질환의 단계를 구분해내었다.

  • PDF

The gene prediction method considering stages of cancer, obtained by integrating gene expression, genetic interaction data and document (문헌정보와 유전자 발현 및 상호 작용 데이터를 통합, 암의 단계를 고려한 질병 유전자 예측 방법)

  • Kim, Jungrim;Yeu, Yunku;Park, Sanghyun
    • Annual Conference of KIPS
    • /
    • 2013.11a
    • /
    • pp.1113-1116
    • /
    • 2013
  • 유전체에 대한 관심이 크게 증가하면서, 이에 따른 다양한 연구가 이루어졌다. 그 결과 유전체와 관련된 다양한 종류의 데이터가 얻어졌으며, 그것을 해석하고 다른 데이터와 통합하는 것이 중요한 연구과제 중 하나가 되었다. 본 논문은 유전자 상호작용(genetic interaction) 데이터, 유전자 발현 데이터, 문헌으로부터 텍스트마이닝 기술을 통해 얻은 이종(heterogeneous) 데이터를 통합하여 암과 관련이 있는 유전자를 찾는 실험을 수행하였다. 또한, 단순히 질병(disease)-정상(normal)의 대조가 아니라 암의 단계(stage)를 고려한 실험을 수행하였다. 데이터를 통합하지 않거나 암의 단계를 고려하지 않았을 경우에 비하여 제안하는 방법이 더 높은 유전자 예측 성능을 나타냈다.

Prediction model of hypercholesterolemia using body fat mass based on machine learning (머신러닝 기반 체지방 측정정보를 이용한 고콜레스테롤혈증 예측모델)

  • Lee, Bum Ju
    • The Journal of the Convergence on Culture Technology
    • /
    • v.5 no.4
    • /
    • pp.413-420
    • /
    • 2019
  • The purpose of the present study is to develop a model for predicting hypercholesterolemia using an integrated set of body fat mass variables based on machine learning techniques, beyond the study of the association between body fat mass and hypercholesterolemia. For this study, a total of six models were created using two variable subset selection methods and machine learning algorithms based on the Korea National Health and Nutrition Examination Survey (KNHANES) data. Among the various body fat mass variables, we found that trunk fat mass was the best variable for predicting hypercholesterolemia. Furthermore, we obtained the area under the receiver operating characteristic curve value of 0.739 and the Matthews correlation coefficient value of 0.36 in the model using the correlation-based feature subset selection and naive Bayes algorithm. Our findings are expected to be used as important information in the field of disease prediction in large-scale screening and public health research.

건강 상담실

  • KOREA ASSOCIATION OF HEALTH PROMOTION
    • 건강소식
    • /
    • v.11 no.8 s.105
    • /
    • pp.33-33
    • /
    • 1987
  • 뇨검사는 검체의 채취가 쉽고 비교적 간단한 검사 방법으로, 많은 정보를 얻을 수 있으며, 국소적ㆍ전신적 질환의 조기발견 및 예측으로 만성화된 질병으로의 이환을 막을 수 있는 방법이다.

  • PDF