• Title/Summary/Keyword: 질량-스프링-댐퍼 시스템

Search Result 5, Processing Time 0.021 seconds

Characteristics of Acoustic Damping Induced by Helmholtz Resonators with Various Geometric Factors in a Model Chamber (모형연소실내에서 헬름홀츠 공명기의 기하학적 형상 인자에 따른 음향 감쇠 특성)

  • Choi, Hyo-Hyun;Park, I-Sun;Sohn, Chae-Hoon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.254-257
    • /
    • 2010
  • Acoustic design parameters of a Helmholtz resonator are studied experimentally and numerically for acoustic stability in a model acoustic tube. Acoustic damping is quantified by the amplitude of the fluid velocity in mass-spring-damper system. The length of an orifice, the volume of a cavity, and the diameters of an orifice and a cavity in the resonator are selected as design parameters for tuning of the resonator. It is found that acoustic damping capacity is increased by shorter orifice and longer cavity in the resonator. As the ratio of the orifice diameter to the cavity diameter increases in the resonator, the damping capacity decreases.

  • PDF

Variable Load System for Maximum Power Operation of Wave Power Generation System (파력발전 장치의 최대전력 운전을 위한 가변부하 시스템)

  • An, Hyunsung;Kim, Young-Cheol;Cha, Hanju
    • Proceedings of the KIPE Conference
    • /
    • 2017.11a
    • /
    • pp.35-36
    • /
    • 2017
  • 본 논문은 파력발전 장치의 최대 전력 운전을 위한 가변 부하 시스템을 구현하고 해상 및 육상 실험을 통해 검증하였다. 파력 장치는 가변 스프링, 댐퍼, 질량, 동기발전기, 가변 부하 시스템 등으로 구성되었으며, 동기발전기는 최대 출력을 발생시킨다. 파도 조건에 따라 달라지는 부하의 크기는 최적부하계산 알고리즘을 통해 선정되었으며, 제안된 부하 시스템을 통해 부하의 크기를 가변시켰다. 파력발전 장치는 수조 장치를 통해 파도 진폭의 크기(200mm~600mm)와 주파수(0.2Hz~1Hz)를 가변시켜 발전된 전력을 비교 분석하였으며, 해상 시험을 통해 시스템의 성능을 검증하였다.

  • PDF

Constructing Equations of Motion for a Dynamic System from Modal Parameters (모달 파라미터를 이용한 동적 시스템의 운동 방정식 구성)

  • Hwang, Woo-Seok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.1
    • /
    • pp.40-45
    • /
    • 2007
  • Modal analysis or modal test is a routine process to get the modal parameters of a dynamic system. The modal parameters include the natural frequencies, damping ratios and mode shapes. This paper presents a method that can derive the equations of motion for a dynamic system from the modal parameters obtained by the modal analysis or modal test. The present method based on the relation between the eigenvalues and eigenvectors of the state space equation derives the mass, damping and stiffness matrices of the system. The numerical verifications for the simple mass-spring-damper system and the cantilevered beam prove the efficiency and accuracy of the present method.

The Control of Spring-Mass-Damper Convergence System using H Controller and μ-Synthesis Controller (H 제어와 μ-합성 제어를 이용한 스프링-질량-감쇠 융합시스템 제어)

  • Jung, Sunghun
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.5
    • /
    • pp.1-11
    • /
    • 2017
  • With a given spring-mass-damper system, $H_{\infty}$ and ${\mu}$-synthesis control methods are used to build system controllers which minimize vibrations at two major natural frequencies in two cases; without uncertainty; with 20% uncertainty. In order to check the stability and performance of two controllers, those are examined using GM and PM values. The signal strength of output responses is compared using the concept of central numerical differentiation and then results are quantified using the RMS method. Lastly, 40 random samples of $H_{\infty}$ and ${\mu}$-synthesis controllers are obtained for three different $W_{per\;f1}$ weighting functions and drawn in the time domain in order to compare the stability. Overall, ${\mu}$-synthesis controller manages the vibrations much better than $H_{\infty}$ controller according to the robust stability and performance values obtained by simulating random samples of 40 plant models.

Analysis of the Current-Collection Performance of a High-Speed Train Using Finite Element Analysis Method (유한 요소 해석 기법을 이용한 고속 철도 차량의 집전 성능 해석)

  • Jung, Sung-Pil;Park, Tae-Won;Kim, Young-Guk;Park, Chan-Kyoung;Paik, Jin-Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.7
    • /
    • pp.827-833
    • /
    • 2011
  • In this study, a simulation model to estimate the current-collection performance of a high-speed train was developed by using a commercial finite element analysis software, SAMCEF. A three-dimensional springDdamperDmass model of a pantograph was created, and its reliability was validated by comparing the receptance of the model to that of the actual pantograph. The wave propagation speed of the catenary model was compared with the analytical wave propagation speed of the catenary system presented in the UIC 799 OR standard. The length of the droppers was controlled, and the pre-sag of the contact wire due to gravity was considered. The catenary and the pantograph were connected by using a contact element, and the contact force variation when the pantograph was moved at velocities of 300 km/h and 370 km/h was obtained. The average, standard deviation, maximum, and minimum values of the contact force were analyzed, and the effectiveness of the developed simulation model was examined.