• Title/Summary/Keyword: 질량플럭스 분포

Search Result 4, Processing Time 0.024 seconds

분사액체와 운용조건이 공기충돌형 인젝터에 의해 형성되는 액적의 분무특성에 미치는 영향

  • Park, Seung-Gyu;Han, Jae-Seob;Kim, Yoo;Kim, Sun-Jin;Park, Jung-Bae
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1999.04a
    • /
    • pp.8-8
    • /
    • 1999
  • 2-유체 인젝터의 분무연소에 대한 통찰 및 구조에 대한 이해와 연료-공기 혼합과 연소반응의 물리적 이해에 필요한 수치적 모델의 개발 및 검증을 위해서는 2유체 시스템에서 액체 및 기체 각각의 기본적 특성인 액적크기, 액적속도, 액적의 질량플럭스(flux), 가스상의 속도측정 등이 필요하다. 특히, 액체분무에서는 액적의 크기를 예측하는 것이 매우 중요한 과제이며, 액적의 크기에 영향을 주는 인자들로는 노즐의 형태, 분사액체의 물성치(점도, 표면장력, 밀도), 주위기체의 조건(온도, 압력, 응축과 증발현상), 분사압력 등이 있다. 그러나, 실제 분무액적의 크기는 분포를 가지므로 같은 SMD를 가지더라도 그 분포의 정도는 크게 다를 수 있어 결과적으로 분무액적의 크기를 평균값만으로 표현하는 것은 불충분할 뿐만 아니라 그 적용에도 한계를 가지게 된다. 따라서 분무액적의 평균크기와 함께 그 분포의 정도 등을 함께 나타내려는 시도가 많은 과학자들에 의하여 연구되었다.

  • PDF

Assessment of PLLIF Measurement for Spray Mass Distribution of Like-Doublet Injector (Like-Doublet 인젝터의 분무 질량분포 측정을 위한 PLLIF기법의 신뢰성 평가)

  • Jung Kihoon;Koh Hyeonseok;Yoon Youngbin
    • Journal of the Korean Society of Visualization
    • /
    • v.1 no.1
    • /
    • pp.98-106
    • /
    • 2003
  • A PLLIF (Planar Liquid Laser Induced Fluorescence) technique has been known to be a useful tool for the measurement of the spray patterns for various spray injectors because it can obtain two-dimensional images with high spatial resolutions without any intrusion on the spray field. In case of dense spray, however, the secondary emission as well as the extinction of an incident laser beam or a fluorescence signal can cause errors in quantifying a mass distribution. Unfortunately, a like-doublet injector which has a dense spray zone at the center may not be a good example or the application of the PLLIF technique. Therefore, we took PLLIF data for the like-doublet injector with a 12 bit color CCD camera by varying laser power, and then assessed their accuracy by comparing with the data obtained with a mechanical patternator and a PDPA (Phase Doppler Particle Analyzer). The experimental results showed that the gray level of fluorescence signal increases nonlinearly due to a secondary emission at the dense spray zone but this nonlinearity can be avoided by reducing the incident laser beam power. In addition, the mass flux distribution of the spray could be obtained by using the mass concentration data from PLLIF technique and the velocity profiles of liquid drops, and this distribution showed good agreement with that of mechanical pattemator. Therefore, it is possible that the PLLIF technique can be successfully applied to finding the mass distributions of like-doublet injectors.

  • PDF

Analysis of the Contribution of Biomass Burning Emissions in East Asia to the PM10 and Radiation Energy Budget in Korea (동아시아의 생체연소 배출물에 대한 한국의 미세먼지 기여도 및 복사 에너지 수지 분석)

  • Lee, Ji-Hee;Cho, Jae-Hee;Kim, Hak-Sung
    • Journal of the Korean earth science society
    • /
    • v.43 no.2
    • /
    • pp.265-282
    • /
    • 2022
  • This study analyzes the impact of long-range transport of biomass burning emissions from northeastern China on the concentration of particulate matter of diameter less than 10 ㎛ (PM10) in Korea using the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem). Korea was impacted by anthropogenic emissions from eastern China, dust storms from northern China and Mongolia, and biomass burning emissions from northeast China between April 4-and 7, 2020. The contributions of long-range PM10 transport were calculated by separating biomass burning emissions from mixed air pollutants with anthropogenic emissions and dust storms using the zeroing-out method. Further, the radiation energy budget over land and sea around the Korean Peninsula was analyzed according to the distribution of biomass burning emissions. Based on the WRF-Chem simulation during April 5-6, 2020, the contribution of long-range transport of biomass burning emissions was calculated as 60% of the daily PM10 average in Korea. The net heat flux around the Korean Peninsula was in a negative phase due to the influence of the large-scale biomass burning emissions. However, the contribution of biomass burning emissions was analyzed to be <45% during April 7-8, 2020, when the anthropogenic emissions from eastern China were added to biomass burning emissions, and PM10 concentration increased compared with the concentration recorded during April 5-6, 2020 in Korea. Furthermore, the net heat flux around the Korean Peninsula increased to a positive phase with the decreasing influence of biomass burning emissions.

Air Sampling and Isotope Analyses of Water Vapor and CO2 using Multi-Level Profile System (다중연직농도시스템(Multi-Level Profile System)을 이용한 수증기와 이산화탄소 시료채취 및 안정동위원소 조성 분석)

  • Lee, Dong-Ho;Kim, Su-Jin;Cheon, Jung-Hwa;Kim, Joon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.12 no.4
    • /
    • pp.277-288
    • /
    • 2010
  • The multi-level $H_2O/CO_2$ profile system has been widely used to quantify the storage and advection effects on energy and mass fluxes measured by eddy covariance systems. In this study, we expanded the utility of the profile system by accommodating air sampling devices for isotope analyses of water vapor and $CO_2$. A pre-evacuated 2L glass flask was connected to the discharge of an Infrared Gas Analyzer (IRGA) of the profile system so that airs with known concentration of $H_2O$ and $CO_2$ can be sampled. To test the performance of this sampling system, we sampled airs from 8 levels (from 0.1 to 40 m) at the KoFlux tower of Gwangneung deciduous forest, Korea. Air samples in the 2L flask were separated into its component gases and pure $H_2O$ and $CO_2$ were extracted by using a vacuum extraction line. This novel technique successfully produced vertical profiles of ${\delta}D$ of $H_2O$ and ${\delta}^{13}C$ of $CO_2$ in a mature forest, and estimated ${\delta}D$ of evapotranspiration (${\delta}D_{ET}$) and ${\delta}^{13}C$ of $CO_2$ from ecosystem respiration (${\delta}^{13}C_{resp}$) by using Keeling plots. While technical improvement is still required in various aspects, our sampling system has two major advantages over other proposed techniques. First, it is cost effective since our system uses the existing structure of the profile system. Second, both $CO_2$ and $H_2O$ can be sampled simultaneously so that net ecosystem exchange of $H_2O$ and $CO_2$ can be partitioned at the same temporal resolution, which will improve our understanding of the coupling between water and carbon cycles in terrestrial ecosystems.