• Title/Summary/Keyword: 질량연소율

Search Result 62, Processing Time 0.026 seconds

Performance and Emission Characteristics of a Controlled Auto-Ignition Gasoline Engine according to Variation of the Injection Timing (분사시기의 변화에 따른 제어자발화 가솔린기관의 성능 및 배기특성)

  • Kim, H.S.
    • Journal of Power System Engineering
    • /
    • v.9 no.1
    • /
    • pp.14-22
    • /
    • 2005
  • This work deals with a controlled auto-ignition (CAI) single cylinder gasoline engine, focusing on the extension of operating conditions. The fuel is injected indirectly into electrically heated inlet air flow. In order to keep a homogeneous air-fuel mixing, the fuel injector is water-cooled by a specially designed coolant passage. Investigated are the engine performance and emission characteristics under the wide range of operating conditions such as 40 in the air-fuel ratio, 1000 to 1800 rpm in the engine speed, $150\;to\;180^{\circ}C$ in the inlet-air temperature, and $80^{\circ}$ BTDC to $20^{\circ}$ ATDC in the injection timing. A controlled auto-ignition gasoline engine can be achieved that the ultra lean-burn with self-ignition of gasoline fuel by heating inlet air. It can be achieved that the emission concentrations of carbon monoxide, hydrocarbons and nitrogen oxide had been significantly reduced by CAI combustion compared with conventional spark ignition engine.

  • PDF

Performance and Emission Characteristics of a Controlled Auto-Ignition Gasoline Engine according to Variation of the Inlet-Air Temperature (흡입공기온도의 변화에 따른 제어자발화 가솔린기관의 성능 및 배기 특성)

  • Kim, H.S.
    • Journal of Power System Engineering
    • /
    • v.10 no.1
    • /
    • pp.19-24
    • /
    • 2006
  • This work treats a controlled auto-ignition (CAI) single cylinder gasoline engine, focusing on the extension of operating conditions. The fuel was injected indirectly into electrically heated inlet air flow. In order to keep a homogeneous air-fuel mixing, the fuel injector was water-cooled by a specially designed coolant passage. The engine performance and emission characteristics were investigated under the wide range of operating conditions such as 40 in the air-fuel ratio, 1000 to 1800 rpm in the engine speed, 150 to $180^{\circ}C$ in the inlet-air temperature, and $60^{\circ}$ BTDC in the injection timing. The ultra lean-burn with self-ignition of gasoline fuel by heating inlet air was achieved in a controlled auto-ignition gasoline engine. It could be also achieved that the emission concentrations of carbon monoxide, hydrocarbons and nitrogen oxide significantly reduced by CAI combustion compared with conventional spark ignition engines.

  • PDF

Synergy Effects of Hybrid Catalysts on Syngas Yield of Partial Oxidation of Methane (메탄의 부분산화를 통한 합성가스 제조에서의 hybrid 촉매의 영향)

  • 오영삼;백영순;이재의;목영일
    • Journal of Energy Engineering
    • /
    • v.8 no.1
    • /
    • pp.34-47
    • /
    • 1999
  • 본 연구에서는 촉매상에서 메탄의 산화시 발생되는 반응열을 이용하고 반응생성물과 미반응 메탄과의 개질반응에 의해 합성가스의 수율을 증대시키기 위하여 연소촉매와 개질촉매를 연속적으로 배치한 hybrid 촉매상에서 개질촉매에 따른 메탄의 부분산화반응의 반응 특성과 합성가스 수율에 미치는 영향을 관찰하였다. 메탄의 산화를 위해서 Pt-Rh/cordierite 촉매를 사용하였으며, 개질촉매로는 상업용 개질촉매인 R67, ICI46-1, 수성가스 전환반응촉매인 LX821 촉매와 6 wt% Ni/cordierite 촉매를 사용하였다. 실험결과 연소촉매와 개질촉매를 연속적으로 사용한 경우 메탄의 산화 과정에서 생성된 CO2 및 H2O가 미반응 메탄과의 개질반응 촉진으로 인하여 합성가스이 수율이 증가됨을 확인할 수 있었다. 이때 생성되는 합성가스의 H2/CO 몰비는 온도에 따라 감소하는 것으로 나타났으며, 80$0^{\circ}C$에서 촉매에 따라 2.2~2.8의 값을 가짐을 알 수 있었다. 개질촉매로 R67 및 Ni/cordierite 촉매를 사용하였을 경우 가장 높은 합성가스의 수율을 얻을 수 있었으며, 연소촉매와 개질촉매의 질량비는 1:1~1:2에서 가장 높은 수율의 합성가스를 얻을 수 있었다. 메탄과 산소의 몰비가 2:2에서 메탄의 전환율과 수소 수율이 가장 높게 나타났으며 메탄의 몰비 증가에 따라 감소되는 경향을 보였다.

  • PDF

A Study on the Characteristics of FDS Heat Release Rate Predictions for Fire involving Solid Combustible Materials in a Closed Compartment (밀폐된 구획 내 복합소재 고체 가연물의 연소시 열방출률의 FDS 예측 특성)

  • Hong, Ter-Ki;Roh, Beom-Seok;Park, Seul-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.11
    • /
    • pp.349-356
    • /
    • 2020
  • The heat release rate (HRR) and fire growth rate of fire for the solid combustibles consisting of multi-materials was measured through the ISO 9705 room corner test, and the computational analysis in a closed compartment was performed to simulate a fire using the heat release rate prediction model provided by a Fire Dynamics Simulator (FDS). The method of predicting the heat release rate provided by the FDS was divided into a simple model and a pyrolysis model. Each model was applied and computational analysis was performed under the same conditions. As the solid combustible consisting of multi-materials, a cinema chair composed mostly of PU foam, PP, and steel was selected. The simple model was over-predicted compared to the predicted heat release rate and fire growth rate using the pyrolysis model in a closed compartment.

An Experimental Study on the Combustion Characteristics of CWM Single Droplet (CWM 단일액적의 연소특성에 관한 연구)

  • Park, Chong-Sang;Lee, Tae-Won;HA, Jong-Yul;Chung, Sung-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.3
    • /
    • pp.402-410
    • /
    • 2000
  • As the combustion process of CWM consists of the water evaporation, the release and combustion of volatile matter, and the combustion of char for every particle, it is more complex than that of existent liquid fuel. Though the many studies on CWM combustion have been carried out by the single droplet using hanging methods or the multiple droplet using atomization methods, any report don't presents definite solution about the effects by the initial water evaporation and combustion of volatile. When CWM is suddenly exposed in the high temperature surroundings, the internal water evaporates and then each droplet builds up pores. Besides, porosity rate changes along the temperature of surroundings, the composition ratio of CWM, and the initial diameter of droplet. In result, because it affects the whole combustion rate, the combustion of CWM has complex mechanism as compared with the combustion of liquid or gas fuel. Therefore, concentrating on porous structure of CWM, this study has proceeded to acquire the basic data on the CWM injection combustion and closely examines the effects of the first stage combustion on the whole combustion by measuring the diameter variations, pore rate, mass fraction burned, and the internal temperature changes of CWM droplet. The results demonstrate that $60{\sim}70%$ of initial mass is reduced during water evaporation and volatile combustion period, and swelling rate, mass faction burned, and density variation are greatly concerned with atomization of CWM etc.

Performance and Emission Characteristics of Compression Ignition Gasoline Engine (압축점화 가솔린기관의 성능 및 배기특성)

  • Kim, Hong-Sung;Kim, Mun-Heon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.7
    • /
    • pp.1007-1014
    • /
    • 2003
  • This work deals with a controlled auto-ignition (CAI) single cylinder gasoline engine, focusing on the extension of operating conditions. The fuel is injected indirectly into electrically heated inlet air flow. In order to keep a homogeneous air-fuel mixing, the fuel injector is water-cooled by a specially designed coolant passage. Investigated are the engine performance and emission characteristics under the wide range of operating conditions such as 32 to 63 in the air-fuel ratio, 1000 to 1800 rpm in the engine speed, and 150 to 18$0^{\circ}C$ in the inlet air temperature. The compression ignition gasoline engine can be achieved that the ultra lean-burn with self-ignition of gasoline fuel by heating inlet air. For example. the allowable lean limit of air-fuel ratio is extended until 63 at engine speed of 1000 rpm and inlet air temperature of 17$0^{\circ}C$. It can be achieved that the emission concentrations of carbon monoxide, hydrocarbons and nitrogen oxide had been significantly reduced by CAI combustion compared with conventional spark ignition engine.

A Study on the Heat Release Rate of EPS Sandwich Panel Core (EPS 샌드위치 패널 심재의 열방출율에 관한 연구)

  • Park, Hyung-Ju;Cho, Myung-Ho
    • Fire Science and Engineering
    • /
    • v.22 no.5
    • /
    • pp.72-78
    • /
    • 2008
  • The mass loss rate and heat release rate of EPS sandwich panel cores were analysed using variable external irradiation level. The experimental materials were exposed to incident heat fluxes form 20 to 50 kW/$m^2$. For the measurement of mass loss rate and heat release rate, the size of specimen was $100mm{\times}100mm{\times}50mm$ and the samples were 3 different kinds. The combustion heat were carried out from the Oxygen bomb calorimeter and the mass loss rate and heat release rate were carried out from the Mass loss calorimeter according to ISO 5660-1. As the results of this study, the mass loss rate of Type A, B, and C were 2.7 g/$m^2s$, 2.8 g/$m^2s$, and 2.3 g/$m^2s$ and the heat release rate of Type A, B, and C were 58.23 kW/$m^2$, 47.19 kW/$m^2$, and 50.06 kW/$m^2$ respectively at the heat flux of 50 kW/$m^2$. In conclusion, when the heat release characteristics applied to a classification system of Canada, Type A and C can be classified grade C-3, and Type C can be classified grade C-2 from all data of this study.

Experiment on the Correlation between Mass Flux of Heptane and Material Property of Wall in Compartment Fire (구획 화재 시 벽면 재료 특성과 헵탄의 질량유속 상관관계 실험)

  • Park, Jung Wook;Shin, Yeon Je;Kim, Jeong Yong;You, Woo Jun
    • Fire Science and Engineering
    • /
    • v.33 no.1
    • /
    • pp.39-44
    • /
    • 2019
  • In this study, the relationships between the material properties of the wall and the fuel mass flux in compartment fire. The fire resistant board (fire-board) and steel plate compartments are constructed with a 0.3 m width, 0.5 m height and 3.0 m length. To obtain the mass loss rate considering the location of the fire origin in compartment, experiments of a heptane pool fire are performed with a combustion area of $0.01m^2$ and $0.0225m^2$. The results show that the initial mass flux of heptane, $0.0087kg/m^2{\cdot}s$, is increased to $0.166kg/m^2{\cdot}s$ for fire board and $0.019kg/m^2{\cdot}s$ for steel plate. It means that the fire-scenario should be considered with the thermal characteristics of the material properties and geometric shapes of the compartment to predict fire propagation accurately in a compartment space.

A Study on Fire Characteristics of Solid Combustible Materials Based on Real Scale Fire Test (실규모 실험에 의한 고체가연물의 화재특성 연구)

  • Kim, Sung-Chan
    • Fire Science and Engineering
    • /
    • v.25 no.5
    • /
    • pp.62-68
    • /
    • 2011
  • A series of fire tests involving realistic solid combustible materials was conducted to quantify the heat release rate and investigate the fire growth characteristics during the initial fire growth stage. For these tests, single/double wood cribs, urethane cushion having polypropylene covers and wood crib on nylon carpet with urethane carpet padding were used as a fuel source. The fire growth coefficient of the solid combustible materials was quantified and the fire growth characteristics were compared with the $t^2$ fire scenario. The mean effective heat of combustion was evaluated by the total mass loss of fuel and total energy release concept and examined the effect of the ventilation and fire condition. The present study provides the practical information on the fire growth characteristics of solid combustible material to design to a set of fire scenarios for the fire risk analysis.

Study on the Performance and Emission Characteristics of a DI Diesel Engine Operated with LPG / Bio-diesel Blended Fuel (LPG/바이오디젤 혼합연료를 사용하는 직접분사식 디젤엔진의 성능 및 배기특성에 관한 연구)

  • Lee, Seok-Hwan;Oh, Seung-Mook;Choi, Young;Kang, Kern-Yong
    • Journal of the Korean Institute of Gas
    • /
    • v.14 no.1
    • /
    • pp.8-14
    • /
    • 2010
  • In this study, we experimentally investigated a compression ignition engine operated with Bio-diesel blended LPG fuel. In particular, the performance, emissions characteristics (including total hydrocarbon, carbon monoxide, nitrogen oxides, and carbon dioxides emissions), and combustion stability of a CI engine fueled with Bio-diesel blended LPG fuel were examined at 1500 rpm. The percentage of Bio-diesel in the fuel blend ranged from 20-60%. The results showed that stable engine operation was possible for a wide range of engine loads up to 40% Bio-diesel by mass. When the Bio-diesel content was increased, leading to a decrease in the lower heating value of the blended fuel, the cetane value increased, resulting in a advanced start of heat release. Exhaust emission measurements showed that THC and CO emissions were increased when using the blended fuel at low engine speeds due to partial burn from over-mixing. NOx emission was emitted less at lower loads and more at higher loads.