• 제목/요약/키워드: 질감 영상

검색결과 315건 처리시간 0.021초

일반화된 문자 및 비디오 자막 영역 추출 방법 (A Generalized Method for Extracting Characters and Video Captions)

  • 전병태;배영래;김태윤
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제27권6호
    • /
    • pp.632-641
    • /
    • 2000
  • 기존의 문자 영역 추출 방법은 전체 영상에 대하여 컬러 축소(color reduction), 영역 분할 및 합병(region split and merge), 질감 분석(texture analysis)등과 같은 방법을 이용하여 문자 영역을 추출했다. 이 방법들은 많은 휴우리스틱(heuristic) 변수와 추출하고자 하는 문자의 사전 지식에 의해 임계치 값을 설정함으로서 알고리즘을 일반화하기 어렵다는 문제점이 있다. 본 논문에서는 문자의 지형학적 특징점 추출 방법과 점-선-면 확장법을 이용하여 문자 영역을 추출함으로서 기존 문자 영역 추출의 문제점인 휴우리스틱 변수의 사용을 최소화하고 임계치 값을 일반화함으로 서 일반화된 문자 영역 추출 방법을 제안 하고자 한다. 실험결과 일반화된 변수와 임계값을 사용함으로서 문자의 사전 지식 없이도 문자 영역을 추출함을 볼 수 있었다. 비디오 영상의 경우 후보 영역 추출율 100%, 검증을 통한 자막 영역 추출율은 98% 이상임을 볼 수 있었다.

  • PDF

해마신경망을 이용한 관심 객체 기반의 효율적인 멀티미디어 검색 시스템의 개발 (The Development of Efficient Multimedia Retrieval System of the Object-Based using the Hippocampal Neural Network)

  • 정석훈;강대성
    • 대한전자공학회논문지SP
    • /
    • 제43권2호
    • /
    • pp.57-64
    • /
    • 2006
  • 본 논문에서는 해마신경망(HCNN:HippoCampal Neural Network)을 이용하여 사용자 친화적인 객체 기반 멀티미디어 검색시스템을 제안한다. 내용 기반 검색(Content-based Retrieval)에 관한 대부분의 기존의 질의 방법은 입력 영상에 의한 질의 또는 컬러(color), 형태(shape), 질감(texture)등과 같은 low-level의 특징을 사용한다. 본 논문에서 제안하는 방법은 MPEG 기반의 압축 비디오 스트림으로부터 장면 전환 검출을 수행하여 샷을 검출한다. 이 샷 프레임에서 컬러 객체의 자동 추출을 위하여 similar colorization과 ACE(Adaptive Circular filter and Edge) 알고리즘을 사용한다. 그리고 이렇게 추출된 특징을 해마 신경망을 통하여 학습한 후 멀티미디어 검색 시스템을 구성한다. 제안하는 해마 신경망은 호감도 조정에 의해서 입력되는 영상패턴의 특징들을 흥분학습과 억제학습을 이용하여 불필요한 특징은 억제시키고 중요한 특징은 흥분학습을 통해 장기기억 시켜서 적응성 있는 실시간 검색 시스템을 구현한다.

멀티미디어 데이타의 재발생 항목 마이닝을 위한 연관규칙 연구 (A Study on Association-Rules for Recurrent Items Mining of Multimedia Data)

  • 김진옥;황대준
    • 한국멀티미디어학회논문지
    • /
    • 제5권3호
    • /
    • pp.281-289
    • /
    • 2002
  • 컴퓨터 처리기술과 저장기술 그리고 인터넷 등의 영향으로 멀티미디어 데이터의 양은 급속하게 증가하지만 체계적으로 멀티미디어 데이터간의 연관규칙을 마이닝하는 연구는 초기 단계이다. 본 논문은 이미지 프로세싱 분야 및 내용기반 이미지 검색에 대한 기존 연구를 바탕으로 대형 영상 데이터 저장소에 저장된 이미지 데이터에서 재발생하는 항목간의 연관규칙을 찾으며 공간적 관계로 내용기반의 연관규칙을 마이닝하는 알고리즘을 제안한다. 제안된 연관규칙 탐색 알고리즘은 이미지의 색상, 질감, 모양 등 내용기반의 영상속성을 오브젝트 항목으로 하여 오브젝트가 이미지에서 재발생될 때를 이용, 이미지간의 연관규칙을 찾고 오브젝트들이 이미지에서 차지하고 있는 공간적 위치관계를 통해 드러나지 않는 이미지간의 연관규칙을 마이닝한다. 본 논문의 재발생 항목을 고려한 연관규칙 알고리즘은 Apriori 알고리즘보다 빈번한 항목 집합을 찾아내는데 더 높은 성능을 보인다는 것을 실험 을 통하여 제시한다. 제 안된 알고리즘은 동일한 정보원으로부터 받은 멀티미디어 데이터간의 연관성을 탐색하는데 특히 효과적이며 다양한 관련 응용분야에 적용할 수 있다.

  • PDF

내용 기반의 멀티미디어 데이터 연관규칙 마이닝에 대한 연구 (A Study on Data Association-Rules Mining of Content-Based Multimedia)

  • 김진옥;황대준
    • 정보처리학회논문지D
    • /
    • 제9D권1호
    • /
    • pp.57-64
    • /
    • 2002
  • 컴퓨터 처리기술과 저장기술 그리고 인터넷 등의 영향으로 멀티미디어 데이터의 양은 급속하게 증가하지만 체계적인 멀티미디어 데이터간의 연관규칙을 마이닝하는 연구는 초기 단계이다. 본 논문은 이미지 프로세싱 분야 및 내용기반 이미지 검색에 대한 기존 연구를 바탕으로 대형 영상 데이터 저장소에 저장된 이미지 데이터에서 재생성되는 항목간의 연관규칙을 찾으며 공간적 관계로 내용기반의 연관규칙을 마이닝하는 알고리즘을 제안한다. 제안된 연관규칙 탐색 알고리즘은 이미지의 색상, 질감, 모양 등 내용기반의 영상속성을 오브젝트 항목으로 하고 오브젝트가 이미지에서 재생성될 때를 이용하여 이미지간의 연관규칙을 찾고 오브젝트들이 이미지에서 차지하고 있는 공간적 위치관계를 통해 드러나지 않는 이미지간의 연관규칙을 마이닝한다. 본 논문의 재생성 항목을 고려한 연관규칙 알고리즘은 Apriori 알고리즘보다 빈번한 항목 집합을 찾아내는데 더 높은 성능을 갖는다는 것을 실험을 통하여 보여준다. 제안된 알고리즘은 동일한 정보원으로부터 받은 멀티미디어 데이터간의 연관성을 탐색하는데 특히 효과적이며 다양한 관련 응용분야에 적용할 수 있다.

시각적 몰입감 향상을 위한 VR 게임 제작 기법 연구 (A Study on VR Game Production Techniques to Improvement of Visual Immersion)

  • 이랑구;정진헌
    • 디지털융복합연구
    • /
    • 제19권11호
    • /
    • pp.457-462
    • /
    • 2021
  • 본 연구는 VR 게임에서 시각적 몰입감을 향상할 수 있는 제작 기법에 관한 연구이다. 먼저, 선행연구를 통해 VR 게임과 현황, 시각 및 몰입감에 관한 이론을 검토하고, 표본을 정하여 VR 게임에서 시각적 몰입을 향상할 수 있는 주요 구성 요소들을 추출하였다. 그리고 현재 전 세계 팬데믹 현상인 코로나19(COVID-19)의 콘셉트를 적용하여 VR 게임을 제작하고 개발하였다. 그 결과, 기술적 구성 요소의 해상도, 프레임 레이트, 시야각, 조명의 밝기, 디자인 품질과 내용적 구성 요소의 스토리텔링, 배경, 연출, 색상과 질감, 흥미와 재미를 통해 VR 게임을 플레이하는 과정에서 시각적 몰입을 유도하고 향상할 수 있는 유의미한 결과를 얻었으며, 최종적으로 원활한 게임 플레이를 구현할 수 있었다. 본 연구 과정 및 결과를 통해 향후 사용자의 시각적 몰입을 유도하고 향상할 수 있는 VR 게임의 제작과 개발 분야에 기초 자료가 될 것으로 기대한다.

GPR 자료 해석에 유용한 속성들 소개 및 적용 사례 분석 (Introduction to Useful Attributes for the Interpretation of GPR Data and an Analysis on Past Cases)

  • 유희은;정인석;임보성;남명진
    • 지구물리와물리탐사
    • /
    • 제24권3호
    • /
    • pp.113-130
    • /
    • 2021
  • 지반 침하, 도로 안전성과 같은 사회적 이슈로 지하 공동 분포를 조사하기 위한 지표투과레이더(ground penetrating radar, GPR) 탐사가 활발히 진행되면서 자료의 양도 함께 증가하고 있다. 하지만 비용과 시간의 효율성을 고려해보았을 때, 모든 자료를 해석할 수 없기 때문에 더욱 직관적이고 정확한 판단이 가능한 해석법이 필요하다. 이러한 문제를 개선하기 위해 정량적 해석이 가능한 속성 분석법이 제안되고 있다. 탄성파 해석에서 많이 사용해온 속성 분석 중 GPR 자료에 적용할 수 있는 속성으로는 복소 트레이스(complex trace)와 유사성(similarity)이 대표적이다. 또한, 최근 영상처리 기술의 발달로 개발된 새로운 속성인 모서리탐지 속성, 이미지 질감 속성 등도 적용성이 있다. 이 논문에서는 GPR 자료 속성분석 연구의 기초를 마련하기 위해, GPR에 적용할 수 있는 속성 분석들을 소개하고 이들의 개념에 대해 기술한 뒤, 속성분석에 기초한 해석법과 다양한 분야에서 활용한 사례를 분석하고자 한다.

AAM 기반 얼굴 표정 인식을 위한 입술 특징점 검출 성능 향상 연구 (A Study on Enhancing the Performance of Detecting Lip Feature Points for Facial Expression Recognition Based on AAM)

  • 한은정;강병준;박강령
    • 정보처리학회논문지B
    • /
    • 제16B권4호
    • /
    • pp.299-308
    • /
    • 2009
  • AAM(Active Appearance Model)은 PCA(Principal Component Analysis)를 기반으로 객체의 형태(shape)와 질감(texture) 정보에 대한 통계적 모델을 통해 얼굴의 특징점을 검출하는 알고리즘으로 얼굴인식, 얼굴 모델링, 표정인식과 같은 응용에 널리 사용되고 있다. 하지만, AAM알고리즘은 초기 값에 민감하고 입력영상이 학습 데이터 영상과의 차이가 클 경우에는 검출 에러가 증가되는 문제가 있다. 특히, 입을 다문 입력얼굴 영상의 경우에는 비교적 높은 검출 정확도를 나타내지만, 사용자의 표정에 따라 입을 벌리거나 입의 모양이 변형된 얼굴 입력 영상의 경우에는 입술에 대한 검출 오류가 매우 증가되는 문제점이 있다. 이러한 문제점을 해결하기 위해 본 논문에서는 입술 특징점 검출을 통해 정확한 입술 영역을 검출한 후에 이 정보를 이용하여 AAM을 수행함으로써 얼굴 특징점 검출 정확성을 향상시키는 방법을 제안한다. 본 논문에서는 AAM으로 검출한 얼굴 특징점 정보를 기반으로 초기 입술 탐색 영역을 설정하고, 탐색 영역 내에서 Canny 경계 검출 및 히스토그램 프로젝션 방법을 이용하여 입술의 양 끝점을 추출한 후, 입술의 양 끝점을 기반으로 재설정된 탐색영역 내에서 입술의 칼라 정보와 에지 정보를 함께 결합함으로써 입술 검출의 정확도 및 처리속도를 향상시켰다. 실험결과, AAM 알고리즘을 단독으로 사용할 때보다, 제안한 방법을 사용하였을 경우 입술 특징점 검출 RMS(Root Mean Square) 에러가 4.21픽셀만큼 감소하였다.

의류 검색용 회전 및 스케일 불변 이미지 분류 및 검색 기술 (Invariant Classification and Detection for Cloth Searching)

  • 황인성;조법근;전승우;최윤식
    • 방송공학회논문지
    • /
    • 제19권3호
    • /
    • pp.396-404
    • /
    • 2014
  • 의류 검색 분야는 의류의 비정형 특성으로 인해 매우 어려운 분야로 인식 오류 및 연산량을 줄이기 위한 노력이 많이 진행되어 왔으나 이를 위한 학습 및 인식 과정 전체에 대한 구체적인 사례가 없고 일부 관련 기술들은 아직 많은 한계를 보이고 있다. 이에 본 논문에서는 입력된 영상에서 사람 객체를 파악하여 착용한 의상으로부터 색상, 무늬, 질감 등 의상이 가질 수 있는 특성 정보를 분석하여, 이를 분류하고 검색하는 방법에 대한 전 과정을 구체적으로 보였다. 특히, 의류의 패턴 및 무늬 등을 구분하기 위한 비정형 의류 검색을 위한 LBPROT_35 디스크립터를 제안하였다. 이 제안 방식은 영상의 통계적 특징을 분석하는 기존의 LBP_ROT(Local Binary Pattern with ROTation-invariant) 방식에 추가로 원 영상에 크기 변화가 생겨도 검색해 낼 수 있도록 하는 특성이 추가된 것이며, 이를 통해 비정형 의류 검색 시 옷이 회전되어 있거나 스케일에 변화가 있어도 높은 검색율을 얻을 수 있게 되었다. 또한 색 공간을 11개의 구간으로 양자화 하는 방식을 이용하여 컬러 분류를 구현하여, 의류 검색에 있어서 중요한 컬러 유사성을 상실하지 않도록 하였다. 한편, 인터넷 상의 의류 사진들로부터 추출한 총 810장의 트레이닝 이미지로 데이터베이스를 구축하고 이들 중 36장을 질의영상으로 테스트 한 결과, 94.4%의 인식률을 보이는 등 Dense-SIFT 대비 높은 인식률을 보였다.

Descriptor 조합 및 동일 병명 이미지 수량 역비율 가중치를 적용한 유사도 기반 작물 질병 검색 기술 설계 및 구현 (Design and Implementation of a Similarity based Plant Disease Image Retrieval using Combined Descriptors and Inverse Proportion of Image Volumes)

  • 임혜진;정다운;유성준;구영현;박종한
    • 한국차세대컴퓨팅학회논문지
    • /
    • 제14권6호
    • /
    • pp.30-43
    • /
    • 2018
  • 영상의 특징인 색상, 모양, 질감 등을 이용해 영상을 검색하는 연구들은 많이 진행되어 왔다. 또한 작물의 질병 영상과 관련된 연구들도 진행되고 있다. 농업 현장에서 재배되는 작물에 발생한 질병을 확인하는데 도움이 되기 위해 본 논문에서는 시설원예 작물의 질병 영상을 이용한 유사도 기반 작물 질병 검색 시스템을 제안한다. 제안하는 시스템은 단일 Descriptor를 사용하지 않고, 조합 Descriptor를 통해 기존 대비 영상의 유사도 검색 성능을 높였고 유사도 검색 결과를 가독성 높게 사용자에게 제공하기 위해 가중치 기반 산출방법을 적용했다. 본 논문에서는 총 13개의 개별 Descriptor를 이용해 조합을 진행했다. 조합 Descriptor를 이용해 6개 작물의 질병에 대해 유사도 검색을 진행했고 작물별로 평균 accuracy가 높은 조합 Descriptor를 선정해 유사도 검색에 사용했다. 검색된 결과는 병명의 비율을 기반으로 한 산출방법과 가중치를 기반으로 한 산출방법을 사용해 백분율로 나타냈다. 병명의 비율을 기반으로 한 산출방법은 질의 영상과 유사도 검색에 사용되는 영상의 수가 많은 병명이 1순위로 출력되는 문제점이 있다. 이를 해결하기 위해 가중치를 기반으로 한 산출방법을 사용했다. 작물의 병명별 테스트 영상을 두 가지 산출방법에 적용해 검색 성능을 측정했다. 작물의 질병별로 두 가지 산출방법에 대해 검색 성능 값의 평균을 비교한 결과 고추, 사과 작물에서는 병명의 비율을 기반으로 한 산출방법의 성능이 가중치를 기반으로 한 산출방법의 성능보다 평균 약 11.89%의 높은 성능 결과를 보였다. 국화, 딸기, 배, 포도 작물에서는 가중치를 기반으로 한 산출방법이 병명의 비율을 기반으로 한 산출방법의 성능보다 평균 약 20.34%의 높은 성능 결과를 보였다. 또한 본 논문에서 제안하는 시스템의 UI/UX는 실제 사용자의 피드백을 통해 편리하게 구성했다. 시스템의 화면마다 상단에 제목과 설명을 출력했고 사용자가 질병의 정보를 보기 편리하게 화면을 구성했다. 검색된 질병의 정보는 위에서 제안한 산출방법을 토대로 유사한 질병의 영상과 병명을 출력한다. 시스템의 환경은 PC 환경 기반의 웹 브라우저와 모바일 디바이스 환경 기반의 웹 브라우저를 통해 사용할 수 있도록 구현했다.

RapidEye 영상을 이용한 북한의 논 면적 산정 (Estimation of Paddy Field Area in North Korea Using RapidEye Images)

  • 홍석영;민병걸;이지민;김이현;이경도
    • 한국토양비료학회지
    • /
    • 제45권6호
    • /
    • pp.1194-1202
    • /
    • 2012
  • 북한과 같이 접근이 힘들고 농업과 관련된 정보가 부족한 지역을 대상으로 RapidEye 위성영상의 판독 및 분류를 통하여 가장 기초적인 농업 현황과 생산 기반인 논 면적을 산정하였다. 291개의 RapidEye 영상을 이용하여 북한 전역을 대상으로 시기별로 논을 분류하기 위한 영상 판독 기준을 설정하였다. 5월 초에서 6월 말은 벼 이앙을 위해 관개를 하기 때문에 벼 이앙 전후에 물의 특성이 위성영상에서 잘 관측되기 때문에 영상이 어둡게 보이는 점을 이용하여 논과 다른 토지이용을 구분한다. 주요 벼 생육시기인 7월 초부터 9월 말에는 RapidEye 영상을 5:3:2 밴드조합으로 하여 영상을 판독하면 벼논의 색상과 질감의 차이를 이용하여 밭작물, 초지, 산림으로부터 논을 분류한다. 9월 말부터 10월 말은 벼 수확을 한 후로 논에 식생이 없는 시기로써 5:3:2 밴드 조합에서 회색빛이 나는 경지 형태를 대상을 논으로 판독한다. 그 결과 북한 전역에 대한 논 분포지도를 작성하였고 시도 행정구역별로 논 면적을 살펴보았다. 대부분의 논은 평안남북도와 황해남도가 위치한 서해안 평야지대에 전체 논 면적의 66% 정도인 $3,521km^2$가 분포하였고 함경남북도, 강원도, 나선시와 같이 동해에 인접한 지역의 논 면적은 $1,172km^2$로 전체 논 면적의 약 20%를 차지하는 것으로 나타났다. RapidEye 영상을 이용하여 분류한 논 면적은 2001년 및 2010년 FAO/WFP 북한 보고서와 비교할 때 각각 1% 이내의 면적 편차를 나타내었다. RapidEye 위성영상을 이용한 북한의 논 분류 결과는 농경지 이용 면적의 산정과 변화, 벼 수량 추정을 위한 마스킹 (masking) 자료로 활용될 수 있는 기본 자료로 의미가 매우 큰 것으로 판단된다. 향후에는 밭에 대한 분류 지도를 구축하고 나아가 옥수수와 같은 주요 밭작물에 대한 판독 방법에 대해서도 연구할 필요가 있을 것으로 생각된다.