기존의 문자 영역 추출 방법은 전체 영상에 대하여 컬러 축소(color reduction), 영역 분할 및 합병(region split and merge), 질감 분석(texture analysis)등과 같은 방법을 이용하여 문자 영역을 추출했다. 이 방법들은 많은 휴우리스틱(heuristic) 변수와 추출하고자 하는 문자의 사전 지식에 의해 임계치 값을 설정함으로서 알고리즘을 일반화하기 어렵다는 문제점이 있다. 본 논문에서는 문자의 지형학적 특징점 추출 방법과 점-선-면 확장법을 이용하여 문자 영역을 추출함으로서 기존 문자 영역 추출의 문제점인 휴우리스틱 변수의 사용을 최소화하고 임계치 값을 일반화함으로 서 일반화된 문자 영역 추출 방법을 제안 하고자 한다. 실험결과 일반화된 변수와 임계값을 사용함으로서 문자의 사전 지식 없이도 문자 영역을 추출함을 볼 수 있었다. 비디오 영상의 경우 후보 영역 추출율 100%, 검증을 통한 자막 영역 추출율은 98% 이상임을 볼 수 있었다.
본 논문에서는 해마신경망(HCNN:HippoCampal Neural Network)을 이용하여 사용자 친화적인 객체 기반 멀티미디어 검색시스템을 제안한다. 내용 기반 검색(Content-based Retrieval)에 관한 대부분의 기존의 질의 방법은 입력 영상에 의한 질의 또는 컬러(color), 형태(shape), 질감(texture)등과 같은 low-level의 특징을 사용한다. 본 논문에서 제안하는 방법은 MPEG 기반의 압축 비디오 스트림으로부터 장면 전환 검출을 수행하여 샷을 검출한다. 이 샷 프레임에서 컬러 객체의 자동 추출을 위하여 similar colorization과 ACE(Adaptive Circular filter and Edge) 알고리즘을 사용한다. 그리고 이렇게 추출된 특징을 해마 신경망을 통하여 학습한 후 멀티미디어 검색 시스템을 구성한다. 제안하는 해마 신경망은 호감도 조정에 의해서 입력되는 영상패턴의 특징들을 흥분학습과 억제학습을 이용하여 불필요한 특징은 억제시키고 중요한 특징은 흥분학습을 통해 장기기억 시켜서 적응성 있는 실시간 검색 시스템을 구현한다.
컴퓨터 처리기술과 저장기술 그리고 인터넷 등의 영향으로 멀티미디어 데이터의 양은 급속하게 증가하지만 체계적으로 멀티미디어 데이터간의 연관규칙을 마이닝하는 연구는 초기 단계이다. 본 논문은 이미지 프로세싱 분야 및 내용기반 이미지 검색에 대한 기존 연구를 바탕으로 대형 영상 데이터 저장소에 저장된 이미지 데이터에서 재발생하는 항목간의 연관규칙을 찾으며 공간적 관계로 내용기반의 연관규칙을 마이닝하는 알고리즘을 제안한다. 제안된 연관규칙 탐색 알고리즘은 이미지의 색상, 질감, 모양 등 내용기반의 영상속성을 오브젝트 항목으로 하여 오브젝트가 이미지에서 재발생될 때를 이용, 이미지간의 연관규칙을 찾고 오브젝트들이 이미지에서 차지하고 있는 공간적 위치관계를 통해 드러나지 않는 이미지간의 연관규칙을 마이닝한다. 본 논문의 재발생 항목을 고려한 연관규칙 알고리즘은 Apriori 알고리즘보다 빈번한 항목 집합을 찾아내는데 더 높은 성능을 보인다는 것을 실험 을 통하여 제시한다. 제 안된 알고리즘은 동일한 정보원으로부터 받은 멀티미디어 데이터간의 연관성을 탐색하는데 특히 효과적이며 다양한 관련 응용분야에 적용할 수 있다.
컴퓨터 처리기술과 저장기술 그리고 인터넷 등의 영향으로 멀티미디어 데이터의 양은 급속하게 증가하지만 체계적인 멀티미디어 데이터간의 연관규칙을 마이닝하는 연구는 초기 단계이다. 본 논문은 이미지 프로세싱 분야 및 내용기반 이미지 검색에 대한 기존 연구를 바탕으로 대형 영상 데이터 저장소에 저장된 이미지 데이터에서 재생성되는 항목간의 연관규칙을 찾으며 공간적 관계로 내용기반의 연관규칙을 마이닝하는 알고리즘을 제안한다. 제안된 연관규칙 탐색 알고리즘은 이미지의 색상, 질감, 모양 등 내용기반의 영상속성을 오브젝트 항목으로 하고 오브젝트가 이미지에서 재생성될 때를 이용하여 이미지간의 연관규칙을 찾고 오브젝트들이 이미지에서 차지하고 있는 공간적 위치관계를 통해 드러나지 않는 이미지간의 연관규칙을 마이닝한다. 본 논문의 재생성 항목을 고려한 연관규칙 알고리즘은 Apriori 알고리즘보다 빈번한 항목 집합을 찾아내는데 더 높은 성능을 갖는다는 것을 실험을 통하여 보여준다. 제안된 알고리즘은 동일한 정보원으로부터 받은 멀티미디어 데이터간의 연관성을 탐색하는데 특히 효과적이며 다양한 관련 응용분야에 적용할 수 있다.
본 연구는 VR 게임에서 시각적 몰입감을 향상할 수 있는 제작 기법에 관한 연구이다. 먼저, 선행연구를 통해 VR 게임과 현황, 시각 및 몰입감에 관한 이론을 검토하고, 표본을 정하여 VR 게임에서 시각적 몰입을 향상할 수 있는 주요 구성 요소들을 추출하였다. 그리고 현재 전 세계 팬데믹 현상인 코로나19(COVID-19)의 콘셉트를 적용하여 VR 게임을 제작하고 개발하였다. 그 결과, 기술적 구성 요소의 해상도, 프레임 레이트, 시야각, 조명의 밝기, 디자인 품질과 내용적 구성 요소의 스토리텔링, 배경, 연출, 색상과 질감, 흥미와 재미를 통해 VR 게임을 플레이하는 과정에서 시각적 몰입을 유도하고 향상할 수 있는 유의미한 결과를 얻었으며, 최종적으로 원활한 게임 플레이를 구현할 수 있었다. 본 연구 과정 및 결과를 통해 향후 사용자의 시각적 몰입을 유도하고 향상할 수 있는 VR 게임의 제작과 개발 분야에 기초 자료가 될 것으로 기대한다.
지반 침하, 도로 안전성과 같은 사회적 이슈로 지하 공동 분포를 조사하기 위한 지표투과레이더(ground penetrating radar, GPR) 탐사가 활발히 진행되면서 자료의 양도 함께 증가하고 있다. 하지만 비용과 시간의 효율성을 고려해보았을 때, 모든 자료를 해석할 수 없기 때문에 더욱 직관적이고 정확한 판단이 가능한 해석법이 필요하다. 이러한 문제를 개선하기 위해 정량적 해석이 가능한 속성 분석법이 제안되고 있다. 탄성파 해석에서 많이 사용해온 속성 분석 중 GPR 자료에 적용할 수 있는 속성으로는 복소 트레이스(complex trace)와 유사성(similarity)이 대표적이다. 또한, 최근 영상처리 기술의 발달로 개발된 새로운 속성인 모서리탐지 속성, 이미지 질감 속성 등도 적용성이 있다. 이 논문에서는 GPR 자료 속성분석 연구의 기초를 마련하기 위해, GPR에 적용할 수 있는 속성 분석들을 소개하고 이들의 개념에 대해 기술한 뒤, 속성분석에 기초한 해석법과 다양한 분야에서 활용한 사례를 분석하고자 한다.
AAM(Active Appearance Model)은 PCA(Principal Component Analysis)를 기반으로 객체의 형태(shape)와 질감(texture) 정보에 대한 통계적 모델을 통해 얼굴의 특징점을 검출하는 알고리즘으로 얼굴인식, 얼굴 모델링, 표정인식과 같은 응용에 널리 사용되고 있다. 하지만, AAM알고리즘은 초기 값에 민감하고 입력영상이 학습 데이터 영상과의 차이가 클 경우에는 검출 에러가 증가되는 문제가 있다. 특히, 입을 다문 입력얼굴 영상의 경우에는 비교적 높은 검출 정확도를 나타내지만, 사용자의 표정에 따라 입을 벌리거나 입의 모양이 변형된 얼굴 입력 영상의 경우에는 입술에 대한 검출 오류가 매우 증가되는 문제점이 있다. 이러한 문제점을 해결하기 위해 본 논문에서는 입술 특징점 검출을 통해 정확한 입술 영역을 검출한 후에 이 정보를 이용하여 AAM을 수행함으로써 얼굴 특징점 검출 정확성을 향상시키는 방법을 제안한다. 본 논문에서는 AAM으로 검출한 얼굴 특징점 정보를 기반으로 초기 입술 탐색 영역을 설정하고, 탐색 영역 내에서 Canny 경계 검출 및 히스토그램 프로젝션 방법을 이용하여 입술의 양 끝점을 추출한 후, 입술의 양 끝점을 기반으로 재설정된 탐색영역 내에서 입술의 칼라 정보와 에지 정보를 함께 결합함으로써 입술 검출의 정확도 및 처리속도를 향상시켰다. 실험결과, AAM 알고리즘을 단독으로 사용할 때보다, 제안한 방법을 사용하였을 경우 입술 특징점 검출 RMS(Root Mean Square) 에러가 4.21픽셀만큼 감소하였다.
의류 검색 분야는 의류의 비정형 특성으로 인해 매우 어려운 분야로 인식 오류 및 연산량을 줄이기 위한 노력이 많이 진행되어 왔으나 이를 위한 학습 및 인식 과정 전체에 대한 구체적인 사례가 없고 일부 관련 기술들은 아직 많은 한계를 보이고 있다. 이에 본 논문에서는 입력된 영상에서 사람 객체를 파악하여 착용한 의상으로부터 색상, 무늬, 질감 등 의상이 가질 수 있는 특성 정보를 분석하여, 이를 분류하고 검색하는 방법에 대한 전 과정을 구체적으로 보였다. 특히, 의류의 패턴 및 무늬 등을 구분하기 위한 비정형 의류 검색을 위한 LBPROT_35 디스크립터를 제안하였다. 이 제안 방식은 영상의 통계적 특징을 분석하는 기존의 LBP_ROT(Local Binary Pattern with ROTation-invariant) 방식에 추가로 원 영상에 크기 변화가 생겨도 검색해 낼 수 있도록 하는 특성이 추가된 것이며, 이를 통해 비정형 의류 검색 시 옷이 회전되어 있거나 스케일에 변화가 있어도 높은 검색율을 얻을 수 있게 되었다. 또한 색 공간을 11개의 구간으로 양자화 하는 방식을 이용하여 컬러 분류를 구현하여, 의류 검색에 있어서 중요한 컬러 유사성을 상실하지 않도록 하였다. 한편, 인터넷 상의 의류 사진들로부터 추출한 총 810장의 트레이닝 이미지로 데이터베이스를 구축하고 이들 중 36장을 질의영상으로 테스트 한 결과, 94.4%의 인식률을 보이는 등 Dense-SIFT 대비 높은 인식률을 보였다.
영상의 특징인 색상, 모양, 질감 등을 이용해 영상을 검색하는 연구들은 많이 진행되어 왔다. 또한 작물의 질병 영상과 관련된 연구들도 진행되고 있다. 농업 현장에서 재배되는 작물에 발생한 질병을 확인하는데 도움이 되기 위해 본 논문에서는 시설원예 작물의 질병 영상을 이용한 유사도 기반 작물 질병 검색 시스템을 제안한다. 제안하는 시스템은 단일 Descriptor를 사용하지 않고, 조합 Descriptor를 통해 기존 대비 영상의 유사도 검색 성능을 높였고 유사도 검색 결과를 가독성 높게 사용자에게 제공하기 위해 가중치 기반 산출방법을 적용했다. 본 논문에서는 총 13개의 개별 Descriptor를 이용해 조합을 진행했다. 조합 Descriptor를 이용해 6개 작물의 질병에 대해 유사도 검색을 진행했고 작물별로 평균 accuracy가 높은 조합 Descriptor를 선정해 유사도 검색에 사용했다. 검색된 결과는 병명의 비율을 기반으로 한 산출방법과 가중치를 기반으로 한 산출방법을 사용해 백분율로 나타냈다. 병명의 비율을 기반으로 한 산출방법은 질의 영상과 유사도 검색에 사용되는 영상의 수가 많은 병명이 1순위로 출력되는 문제점이 있다. 이를 해결하기 위해 가중치를 기반으로 한 산출방법을 사용했다. 작물의 병명별 테스트 영상을 두 가지 산출방법에 적용해 검색 성능을 측정했다. 작물의 질병별로 두 가지 산출방법에 대해 검색 성능 값의 평균을 비교한 결과 고추, 사과 작물에서는 병명의 비율을 기반으로 한 산출방법의 성능이 가중치를 기반으로 한 산출방법의 성능보다 평균 약 11.89%의 높은 성능 결과를 보였다. 국화, 딸기, 배, 포도 작물에서는 가중치를 기반으로 한 산출방법이 병명의 비율을 기반으로 한 산출방법의 성능보다 평균 약 20.34%의 높은 성능 결과를 보였다. 또한 본 논문에서 제안하는 시스템의 UI/UX는 실제 사용자의 피드백을 통해 편리하게 구성했다. 시스템의 화면마다 상단에 제목과 설명을 출력했고 사용자가 질병의 정보를 보기 편리하게 화면을 구성했다. 검색된 질병의 정보는 위에서 제안한 산출방법을 토대로 유사한 질병의 영상과 병명을 출력한다. 시스템의 환경은 PC 환경 기반의 웹 브라우저와 모바일 디바이스 환경 기반의 웹 브라우저를 통해 사용할 수 있도록 구현했다.
북한과 같이 접근이 힘들고 농업과 관련된 정보가 부족한 지역을 대상으로 RapidEye 위성영상의 판독 및 분류를 통하여 가장 기초적인 농업 현황과 생산 기반인 논 면적을 산정하였다. 291개의 RapidEye 영상을 이용하여 북한 전역을 대상으로 시기별로 논을 분류하기 위한 영상 판독 기준을 설정하였다. 5월 초에서 6월 말은 벼 이앙을 위해 관개를 하기 때문에 벼 이앙 전후에 물의 특성이 위성영상에서 잘 관측되기 때문에 영상이 어둡게 보이는 점을 이용하여 논과 다른 토지이용을 구분한다. 주요 벼 생육시기인 7월 초부터 9월 말에는 RapidEye 영상을 5:3:2 밴드조합으로 하여 영상을 판독하면 벼논의 색상과 질감의 차이를 이용하여 밭작물, 초지, 산림으로부터 논을 분류한다. 9월 말부터 10월 말은 벼 수확을 한 후로 논에 식생이 없는 시기로써 5:3:2 밴드 조합에서 회색빛이 나는 경지 형태를 대상을 논으로 판독한다. 그 결과 북한 전역에 대한 논 분포지도를 작성하였고 시도 행정구역별로 논 면적을 살펴보았다. 대부분의 논은 평안남북도와 황해남도가 위치한 서해안 평야지대에 전체 논 면적의 66% 정도인 $3,521km^2$가 분포하였고 함경남북도, 강원도, 나선시와 같이 동해에 인접한 지역의 논 면적은 $1,172km^2$로 전체 논 면적의 약 20%를 차지하는 것으로 나타났다. RapidEye 영상을 이용하여 분류한 논 면적은 2001년 및 2010년 FAO/WFP 북한 보고서와 비교할 때 각각 1% 이내의 면적 편차를 나타내었다. RapidEye 위성영상을 이용한 북한의 논 분류 결과는 농경지 이용 면적의 산정과 변화, 벼 수량 추정을 위한 마스킹 (masking) 자료로 활용될 수 있는 기본 자료로 의미가 매우 큰 것으로 판단된다. 향후에는 밭에 대한 분류 지도를 구축하고 나아가 옥수수와 같은 주요 밭작물에 대한 판독 방법에 대해서도 연구할 필요가 있을 것으로 생각된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.