• Title/Summary/Keyword: 질감분할

Search Result 75, Processing Time 0.024 seconds

Simple Method of Integrating 3D Data for Face Modeling (얼굴 모델링을 위한 간단한 3차원 데이터 통합 방법)

  • Yoon, Jin-Sung;Kim, Gye-Young;Choi, Hyung-Ill
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.4
    • /
    • pp.34-44
    • /
    • 2009
  • Integrating 3D data acquired in multiple views is one of the most important techniques in 3D modeling. However, due to the presence of surface scanning noise and the modification of vertices consisting of surface, the existing integration methods are inadequate to some applications. In this paper, we propose a method of integrating surfaces by using the local surface topology. We first find all boundary vertex pairs satisfying a prescribed geometric condition on adjacent surfaces and then compute 2D planes suitable to each vertex pairs. Using each vertex pair and neighbouring boundary vertices projected to their 2d plane, we produce polygons and divide them to the triangles which will be inserted to empty space between the adjacent surfaces. A proposed method use local surface topology and not modify the vertices consisting of surface to integrate several of surfaces to one surface, so that it is robust and simple. We also integrate the transformed textures to a 2D image plane computed by using a cylindrical projection to composite 3D textured model. The textures will be integrated according to the partition lines which considering attribute of face object. Experimental results on real object data show that the suggested method is simple and robust.

Leukocyte Segmentation using Saliency Map and Stepwise Region-merging (중요도 맵과 단계적 영역병합을 이용한 백혈구 분할)

  • Gim, Ja-Won;Ko, Byoung-Chul;Nam, Jae-Yeal
    • The KIPS Transactions:PartB
    • /
    • v.17B no.3
    • /
    • pp.239-248
    • /
    • 2010
  • Leukocyte in blood smear image provides significant information to doctors for diagnosis of patient health status. Therefore, it is necessary step to separate leukocyte from blood smear image among various blood cells for early disease prediction. In this paper, we present a saliency map and stepwise region merging based leukocyte segmentation method. Since leukocyte region has salient color and texture, we create a saliency map using these feature map. Saliency map is used for sub-image separation. Then, clustering is performed on each sub-image using mean-shift. After mean-shift is applied, stepwise region-merging is applied to particle clusters to obtain final leukocyte nucleus. The experimental results show that our system can indeed improve segmentation performance compared to previous researches with average accuracy rate of 71%.

Building Detection by Convolutional Neural Network with Infrared Image, LiDAR Data and Characteristic Information Fusion (적외선 영상, 라이다 데이터 및 특성정보 융합 기반의 합성곱 인공신경망을 이용한 건물탐지)

  • Cho, Eun Ji;Lee, Dong-Cheon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.6
    • /
    • pp.635-644
    • /
    • 2020
  • Object recognition, detection and instance segmentation based on DL (Deep Learning) have being used in various practices, and mainly optical images are used as training data for DL models. The major objective of this paper is object segmentation and building detection by utilizing multimodal datasets as well as optical images for training Detectron2 model that is one of the improved R-CNN (Region-based Convolutional Neural Network). For the implementation, infrared aerial images, LiDAR data, and edges from the images, and Haralick features, that are representing statistical texture information, from LiDAR (Light Detection And Ranging) data were generated. The performance of the DL models depends on not only on the amount and characteristics of the training data, but also on the fusion method especially for the multimodal data. The results of segmenting objects and detecting buildings by applying hybrid fusion - which is a mixed method of early fusion and late fusion - results in a 32.65% improvement in building detection rate compared to training by optical image only. The experiments demonstrated complementary effect of the training multimodal data having unique characteristics and fusion strategy.

Classification of Brain MRI Series by using Decision Tree (결정 트리를 이용한 뇌 MRI 시리즈 분류)

  • 김용욱;김준태;엄기현;조형제
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2002.05d
    • /
    • pp.1087-1092
    • /
    • 2002
  • 본 논문에서는 결정 트리 학습을 이용하여 뇌 MRI 시리즈를 분류하는 시스템을 제안한다. 영상으로부터 얻을 수 있는 정보에는 두 종류가 있다. 하나는 크기, 색상, 질감, 윤곽선 등 원 영상으로부터 직접 얻을 수 있는 하위레벨(low-level) 특징들이고, 다른 하나는 특정 개체의 존재유무, 여러 부위 사이의 공간적 관계 등 분할된 영상들에 대한 해석을 통하여만 얻을 수 있는 상위레벨(high-level) 특징들이다. 영상을 의미에 따라 분류하기 위해서는 학습 및 분류가 상위레벨 특징들을 기반으로 수행되어야 한다. 제안된 시스템에서는 결정 트리 학습을 이용하여 영상을 구성하는 요소를 학습하고 분류하며 그에 따라 영상 시리즈를 대표할 수 있는 상위레벨 특징을 추출하였다. 정상, 뇌경색, 뇌종양이 있는 뇌 MRI 시리즈에 대하여 분류 실험을 수행하였으며, 그 결과를 설명 하였다.

  • PDF

Extraction of Forest Cover Information over Compartments by Using Spaceborne High Resolution Imagery (고해상도 위성 화상(畵像)을 이용한 임반 임상정보 추출)

  • Kim, Cheon;Hong, Sung-Hoo
    • Proceedings of the KSRS Conference
    • /
    • 2007.03a
    • /
    • pp.25-28
    • /
    • 2007
  • 본 논문은 KOMPSAT-2호 및 3호의 화상활용 일환으로 임반 단위의 임상정보 추출에 관한 시범연구이다. QuickBird 화상을 통해 획득한 결과를 요약하면, 첫째로 회색단계공발생 행렬(GLCM)에 기초한 질감(texture)매개변수 화상은 소나무림과 잣나무림의 임상판별을 가능하게 만든다. 단, 동령림 조건과 사면 방위에 무관한 상태의 추가연구가 요구된다. 둘째로 Matlab의 분수계(watershed)산법에 기초한 분할화상에서 소나물김과 잣나무림의 수관투명 면적 대소를 파악할 수 있다. 역시 동령림 조건하의 보충 연구가 필요하다. 셋째로 형태배율과 진원도(roundness)에 기초한 소나무림과 잣나무림의 구별에서 진원도에서는 차이의 유의성이 없고, 형태배율에서는 수관둘레의 불규칙에 의해 유의성있게 구분된다. 본 연구의 임상정보 추출기법은 정밀임업의 정량정보 제공에 기여할 것이다.

  • PDF

Classification of Breast Tumor Cell Tissue Section Images Based on Wavelet Transform (Wavelet 변환에 기반한 유방 종양 세포 조직 영상의 분류)

  • 황해길;최현주;최익환;최흥국;윤혜경
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.10b
    • /
    • pp.340-342
    • /
    • 2001
  • 본 논문은 유방질환 중에서 Duct(관)에 발생하는 유방 종양을 benign(양성종양)/DCIS (Ductal Carcinoma In Situ)/NOS(Invasive ductal carcinoma)로 자동 분류하기 위한 분류방법을 제안한다. 분류기 생성에서 가장 중요한 단계인 특징 추출단계에서는 wavelet 변환을 적용하였으며, wavelet 변환의 각 depth에 따라 분류기를 생성하여, depth와 생성된 분류기의 분류 정확도와의 상관관계를 비교.분석하였다. 현미경 100배 배율과 400배 배율의 유방 질환 영상을 1, 2, 3, 4단계(depth)의 wavelet 변환을 적용한 후, 분할된 서브밴드에서 GLCM을 이용하여 질감 특징(Entropy, Energy, Contrast, Homogeneity)을 추출하여, 이 특징값들을 조합하여 판별분석에 의해 분류기(classifier)를 생성한 후, 분류 정확도를 검증하였다. Benign/DCIS/NOS를 분류하려면 최소 3단계 이상의 wavelet 변환을 적용해야 하고, 400배 배율 영상보다는 100배 배율의 영상이 더 나은 결과를 보였다.

  • PDF

Texture Classification Based on Morphological Subband Decomposition (모폴로지컬 부대역 분할에 기초한 질감영상 분류)

  • 김기석;도경훈;권갑현;하영호
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.12
    • /
    • pp.51-58
    • /
    • 1994
  • Mathematical morphology based on set theory is easy to be implemented in parallel and can be applied to various fields in image analysis. Particularly mophological pattern spectrum can detect critical scales in an image object and quantify various aspects of the shape-size content. In this paper, texture classification using pattern spectrum based on morphological subband decomposition is porposed. The low-low band extracts pattern spectrum features, and the high-low, low-high, and high-high bands extrack the structural information. This approach has the advantages of efficient information extraction, less time-consuming, high accuacy, less computation, and parallel implementation.

  • PDF

Multi-Dimensional Association Rule Mining in Multimedia Data (멀티미디어 데이터의 다차원 연관규칙 마이닝)

  • Kim, Jin-Ok;Hwang, Dae-Jun
    • Annual Conference of KIPS
    • /
    • 2001.10a
    • /
    • pp.233-236
    • /
    • 2001
  • 멀티미디어 데이터의 증가와 마이닝 기술의 발전으로 인해 멀티미디어 마이닝에 대한 관심이 증가하고 있다. 본 논문에서는 특성국지화를 이용한 내용기반의 정보검색 기술과 다차원 데이터큐브 구축기술을 통해 멀티미디어 데이터에서 연관규칙을 찾아내는 멀티미디어 데이터마이닝 시스템 프로토타입을 제안한다. 특히 멀티미디어 데이터의 칼라, 질감 등 거시적인 이미지 성분 대신 이미지의 영역성과 유사성을 이용한 특성국지화방법을 이용하여 이미지를 분할함으로써 방대한 데이타에서 효과적인 내용기반의 정의 검색을 시행하고 검색한 벡터를 메타데이타로 한 데이스베이스를 구축한다. 그리고 데이터베이스에서 데이터간 연관규칙을 찾아내어 지식을 마이닝하는데 효과적인 다차원 데이터큐브를 구축하고 여기에 연관규칙 검색 알고리즘을 적용한다.

  • PDF

Design of A New Anti-Aliasing Algorithm Using Dynamic Block Operation (동적 블럭연산을 이용한 새로운 Anti-Aliasing 알고리즘 설계)

  • Kim, Myoung-Sin;Ji, Young-Jun;Lee, Sung-Tae;Kim, Pan-Koo;Lee, Yun-Bae
    • Annual Conference of KIPS
    • /
    • 2000.04a
    • /
    • pp.288-292
    • /
    • 2000
  • 본 논문은 컴퓨터 그래픽 이미지의 데이터를 디지털화 하는 과정에서 Aliasing으로 인하여 손실된 Pixel 정보에 대해 동적 블럭으로 분할 연산하고 벡터 양자화, Gaussian 함수를 이용하여 손실된 정보들을 보간하여 해상도가 높아진 영상을 얻을 수 있는 새로운 Anti-Aliasing 알고리즘을 제시한다. Anti-Aliasing의 효과를 더욱 시각적으로 분별 할 수 있도록 하기 위해 Gray 레벨의 이미지로 실험을 하였고, 현재 Graphic을 지원하는 하드웨어 구조의 PC 기반에 변화 없이 적용할 수 있고, 이미지의 질감을 더욱 부드럽게 향상 시킬수가 있다.

  • PDF

Object Image Classification Using Hierarchical Neural Network (계층적 신경망을 이용한 객체 영상 분류)

  • Kim Jong-Ho;Kim Sang-Kyoon;Shin Bum-Joo
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.11 no.1
    • /
    • pp.77-85
    • /
    • 2006
  • In this paper, we propose a hierarchical classifier of object images using neural networks for content-based image classification. The images for classification are object images that can be divided into foreground and background. In the preprocessing step, we extract the object region and shape-based texture features extracted from wavelet transformed images. We group the image classes into clusters which have similar texture features using Principal Component Analysis(PCA) and K-means. The hierarchical classifier has five layes which combine the clusters. The hierarchical classifier consists of 59 neural network classifiers learned with the back propagation algorithm. Among the various texture features, the diagonal moment was the most effective. A test with 1000 training data and 1000 test data composed of 10 images from each of 100 classes shows classification rates of 81.5% and 75.1% correct, respectively.

  • PDF