• Title/Summary/Keyword: 진화 신경망

Search Result 107, Processing Time 0.026 seconds

Evolutionary Neural Network based on DNA coding method for Time series prediction (시계열 예측을 위한 DNA코딩 기반의 신경망 진화)

  • 이기열;이동욱;심귀보
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.10 no.4
    • /
    • pp.315-323
    • /
    • 2000
  • In this paper, we propose a method of constructing neural networks using bio-inpired emergent and evolutionary concepts. This method is algorithm that is based on the characteristics of the biological DNA and growth of plants, Here is, we propose a constructing method to make a DNA coding method for production rule of L-system. L-system is based on so-called the parallel rewriting nechanism. The DNA coding method has no limitation in expressing the produlation the rule of L-system. Evolutionary algotithms motivated by Darwinaian natural selection are population based searching methods and the high performance of which is highly dependent on the representation of solution space. In order to verify the effectiveness of our scheme, we apply it one step ahead prediction of Mackey-Glass time series, Sunspot data and KOSPI data.

  • PDF

An Evolution of Cellular Automata Neural Systems using DNA Coding Method (DNA 코딩방법을 이용한 셀룰라 오토마타 신경망의 진화)

  • Lee, Dong-Wook;Sim, Kwee-Bo
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.12
    • /
    • pp.10-19
    • /
    • 1999
  • Cellular Automata Neural Systems(CANS) are neural networks based on biological development and evolution. Each neuron of CANS has local connection and acts as a form of pulse according to the dynamics of the chaotic neuron. CANS are generated from initial cells according to the CA rule. In the previous study, to obtain the useful ability of CANS, we make the pattern of initial cells evolve. However, it is impossible to represent all solution space, so we propose an evolving method of CA rule to overcome this defect in this paper. DNA coding has the redundancy and overlapping of gene and is apt for the representation of the rule. In this paper, we show the general expression of CA rule and propose translation method from DNA code to CA rule. The effectiveness of the proposed scheme was verified by applying it to the navigation problem of autonomous mobile robot.

  • PDF

Evolution of Modualr Neural Networks by L-System (L-시스템을 이용한 모듈형 신경망의 구조진화)

  • 이승익;조성배
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1997.10a
    • /
    • pp.127-130
    • /
    • 1997
  • 신경망은 입출력 관계가 명시적으로 표현되기 어려운 경우에 수집된 데이터를 이용하여 원래의 함수를 근사할 수 있느 특성이 있다. 최근에는 신경망의 모델링 성능을 향상시키기 위하여 여러개의 모듈을 기반으로 신경망을 구성하는 모듈형 신경망이 활발히 연구되고 있다. 본 논문에서는 린덴마이어 시스템(L-시스템)의 문법적 적용을 통하여 이러한 모듈형 신경망의 구조를 결정하는 방법을 제시하고자 한다. L-시스템은 본래 식물의 성장과정을 기술하기 위하여 제안된 방법인데, 본 논문에서는 신경망의 모듈형 구조가 L-시스템의 문법을 통하여 적절히 결정됨을 보인다.

  • PDF

A Characteristics of Cellulra Automata Neural Systems (셀룰라 오토마타 신경망의 특성)

  • 이동욱;심귀보
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.10a
    • /
    • pp.267-273
    • /
    • 1998
  • 셀룰라 오토마타 신경망은 저자에 의하여 개발된 신경망으로써 주변의 셀과 국소적인 연결을 가지며 셀룰라 오토마타의 발생규칙에 따라 생성되는 신경망이다. 셀룰라 오토마타 신경망을 간단히 줄여서 ECANS라고 한다. 본 신경망은 카오스 뉴런 모델을 사용하며 뉴런사이의 연결강도는 흥분성 또는 억제성 결합을 갖는다. 신호의 전달방식은 펄스의 형태로서 뉴런이 발화하면 '1' 발화하지 않으면 '0'이 된다. 본 논문에서는 셀룰라 오토마타를 구성하는 요소별 특징을 살펴보고 주어진 문제에 적합한 셀룰라 오토마타 신경망을 얻어내기 위한 진화방법으로서 DNA 코딩방법을 제안한다. 제안한 방법의 유효성을 시뮬레이션을 통하여 검증한다.

  • PDF

Autonomous Mobile Robot Control using Block-based Evolvable Neural Network (블록 기반 진화신경망을 이용한 자율이동로봇의 동작제어)

  • Moon, Sang-Woo;Kong, Seong-Gon
    • Proceedings of the KIEE Conference
    • /
    • 1999.07g
    • /
    • pp.2824-2826
    • /
    • 1999
  • 본 논문에서는 자율이동로봇의 동작 제어를 수행한다. 제어기로서는 블록기반 진화신경망을 이용하고, 진화 알고리즘을 사용하여 내부구조와 가중치를 동시에 진화시킨다. 진화에 의하여 최대 적합도를 가지는 제어기를 획득한 후 이를 이용하여 자율이동로봇의 동작 성능을 평가한다.

  • PDF

A Cell Balancing System based on Evolved Neural Networks for Large Lithium-Polymer Batteries in Electric Vehicles (전기자동차의 대용량 리튬-폴리머 배터리를 위한 진화 신경망 기반 셀 밸런싱 시스템)

  • Oh, Keun-Hyun;Kim, Jong-Woo;Seo, Dong-Kwan
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2011.06c
    • /
    • pp.292-294
    • /
    • 2011
  • 전기자동차에 대한 연구가 진행됨에 따라 동력원으로 사용되는 대용량 리튬-폴리머 배터리의 운용과 관리에 대한 관심이 증가하고 있다. 다중 셀로 구성된 대용량 리튬-폴리머 배터리는 물리적 화학적 특성에 따라 충전시 셀간 전압 격차가 발생하게 된다. 셀간 전압차는 배터리 용량, 수명, 안정성에 부정적 영향을 주게 된다. 기존 연구들은 각 셀의 특성을 고려하지 않고 충전 결과를 바탕으로 동일한 밸런싱 방법을 적용시킴으로 효율성을 떨어트린다. 본 논문에서는 진화 신경망 기반의 지능형 셀 밸런싱 시스템을 제안한다. 배터리의 특성을 진화 신경망을 통해 학습시킴으로 각 셀 충전시 저항의 크기를 결정한다. 이를 통해 각 셀 특성을 고려한 사전 셀 밸런싱을 수행하였다. 제안하는 방법의 유용성을 입증하기 위해 카이스트 온라인 전기자동차에 장착 예정인 배터리 관리 시스템 기반 시뮬레이션을 수행하여 효과적인 셀 밸런싱이 가능함을 보였다.

Co-Evolution of Subsumption Architecture for Behavior Learning of Autonomous Mobile Robot (자율 이동 로봇의 행동 학습을 위한 포섭 구조의 공진화)

  • 김현영;허광승;이동욱;심귀보
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.05a
    • /
    • pp.28-31
    • /
    • 2002
  • 본 논문에서는 자율 이동 로봇의 학습을 위해 신경망과 진화 알고리즘을 이용한 방법을 제안한다. 이것은 자연계의 생물이 진화와 학습을 통해 환경에 적응해 나가는 방식과 유사하다. 또한 본 논문에서는 행동기반 제어 방법인 포섭구조를 이용해 로봇의 행동을 제어하는 방법을 제안한다 포섭 구조는 행동 규칙을 병렬적으로 모듈화 하여 낮은 레벨에서는 기본적인 행동을 담당하고, 높은 레벨에서는 좀 더 복잡한 행동을 담당하는 구조로 되어있다 따라서 각 행동 레벨이 협조를 함으로써 복잡한 임무를 수행할 수 있다. 포섭 구조에서 각 레벨의 제어기는 신경 망으로 구성하며 각 행동 레벨이 서로 영향을 주고받으며 진화함으로써 주어진 임무를 달성하도록 한다. 제안된 방법은 자율 이동 로봇인 Khepera 로봇을 이용해 실제 환경에서 구현함으로서 그 유효성을 입증한다.

  • PDF

Analysis of DNA Microarray Data Using Evolutionary Neural Networks (진화 신경망을 이용한 DNA Microarray 데이터 분석)

  • 김경중;조성배
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.10b
    • /
    • pp.733-735
    • /
    • 2003
  • DNA Microarray 기술은 유전자의 발현여부를 매우 빠르게 검사할 수 있는 도구이며 각종 질병의 발생여부를 예측하기 위한 정보를 제공한다. 유전자 발현 데이터로부터 암의 발생 여부를 예측하기 위해서는 기존의 접근방법과 다른 기계학습 기법이 요구된다. 일반적으로 샘플의 개수가 극히 적은 반면에 특징의 개수는 수천에서 수만 개가 존재하기 때문에 문제의 특성에 맞는 분류기의 구조를 결정하는 것이 매우 어려운 일이기 때문이다. 진화 신경망은 신경망의 구조와 가중치를 동시에 학습하며 사용자는 각 개체의 적합도를 평가할 수 있는 방법만 제공해 주면된다. 특히 신경망의 구조를 사전에 고정하지 않아도 되는 장점이 있기 때문에 전문적인 지식이 없는 사용자라도 이용가능하다. 대장암 데이터에 대한 실험결과 제안하는 분류기 모델이 다층 퍼셉트론, SVM (support vector machine), 최근접 이웃 방법에 비해 향상된 성능을 보였다.

  • PDF

Time Series Prediction by Combining Evolutionary Neural Trees (진화 신경트리의 결합에 의한 시계열 예측)

  • 정제균;장병탁
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1999.10b
    • /
    • pp.342-344
    • /
    • 1999
  • 신경트리(evolutionary neural trees)는 트리 구조의 신경망 모델로서 진화 알고리즘으로 학습하기에 적합한 구조이다. 본 연구에서는 진화 신경트리를 시계열 예측에 적용하였다. 시계열 데이터는 대개 잡음이 포함되어 있으며 동역학적인 특성을 지닌다. 본 논문에서는 견고한 예측 결과를 획득하기 위해 한 개의 신경트리가 아닌 여러개의 신경트리를 결합하여 예측 모델을 구성하는 committee machine을 소개한다. 출력 패턴가에 correlation이 최소가 되도록 상이한 신경트리를 선택하여 결합함으로써 모델 결합 효과를 최대화하는 방법을 사용하였다. 인공적인 잡음을 포함한 시계열 예측 문제와 실세계 데이터에 대한 실험에서 예측에 대한 정확도가 단일 모델을 사용한 경우 보다 향상되었다.

  • PDF

Evolutionary Learning of Mobile Robot Behaviors (이동 로봇 행위의 진화적 학습)

  • 심인보;윤중선
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.12a
    • /
    • pp.207-210
    • /
    • 2002
  • 진화와 학습 사이의 상호 연관성을 연구하기 위해 인공 진화기법(artificial evolutionary algorithm)과 신경회로망(neural networks)을 이용한 학습 기법들이 사용되어 왔다. 신경 회로망 구조를 가지는 이동 로봇의 제어기의 구조와 파라미터를 결정하기 위한 방법으로 진화적 학습(evolutionary learning) 방법이 제안되었다. 제안된 방법에서 진화적 학습은 실제 로봇을 통해 on-line 방식으로 이루어지며, 장애물 회피 문제를 통해 유용성을 검증하고 진화 과정에 학습이 미치는 영향을 살펴보았다. 그리고 수학적으로 제시되기 힘든 진화 학습의 평가에 설계자의 개입을 허용하는 인터액티브 진화 알고리즘(interactive evolutionary algorithm)방법을 모색해 보았다.