• Title/Summary/Keyword: 진화 로봇

Search Result 151, Processing Time 0.039 seconds

Active Learning of Mobile Robot Path Planning Using Evolutionary Algorithms (진화 알고리즘을 이용한 이동로봇 경로 계획의 능동적 학습)

  • 김성훈;장병탁
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1997.11a
    • /
    • pp.263-266
    • /
    • 1997
  • 로봇 축구 경기를 위해서는 경기장의 임의의 시작점에서 목표점으로 장애물을 피해 갈 수 있는 능력이 필요하다. 이러한 경로 계획을 학습하기 위해서 다양한 상황을 모두 고려할 경우 학습량이 급격히 증가한다. 그러나 많은 실제적인 학습 문제에 있어서는 가능한 모든 학습 데이터를 사용하지 않고도 원하는 학습 효과를 가져올 수 있음이 알려져 있으며, 이러한 경우 데이터를 스스로 선별하여 학습하는 능동적 학습 방법이 효과적이다. 본 논문에서는 진화 알고리즘을 사용하여 실시간에 경로 계획을 하기 위한 새로운 능동적 학습 방법을 제시한다. 제안되는 방법은 두 개의 진화 알고리즘으로 구성되는데 하나는 주어진 시작점-목표점간의 최적 경로를 찾는데 사용되고 또 다른 하나의 진화 알고리즘은 유용한 시작점-목표점들의 쌍을 탐색하는데 사용된다. 이 방법은 계산 시간의 여유가 있을 때 다양한 문제를 스스로 제시하고 해결하는 법을 학습해 놓고 후에 실제 문제가 주어질 때 기존의 문제와 가장 유사한 문제를 찾아 실시간에 해결함으로써 기존의 진화 알고리즘에 의한 경로 계획법들이 갖는 실시간성에서의 단점을 개선할 수 있다. 실험을 통하\ulcorner 제안된 두 가지 진화 알고리즘의 성능을 실험적으로 검토한다.

  • PDF

Action Selection Mechanism for Combining of CAM-Brain Modules (CAM-Brain 모듈결합을 위한 행동선택방법론)

  • 김경중;조성배
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.10b
    • /
    • pp.137-139
    • /
    • 2000
  • 이동로봇을 위한 제어기를 개발하려는 폭넓은 연구가 진행되어 왔다. 특히, 몇몇 연구가들은 유전자 알고리즘이나 유전자 프로그래밍과 같은 진화 알고리즘을 사용하여 장애물 피하기, 포식자 피하기, 이동하는 먹이 잡기 등의 기능을 수행하는 이동로봇 제어기를 개발하였다. 이러한 연구 선상에서, 우리는 이동로봇을 제어하기 위해 셀룰라 오토마타 상에서 진화된 CAM-Brain을 적용하는 방법을 보여왔다. 그러나, 이러한 접근방법은 로봇이 복잡한 환경에서 적합한 행동을 수행하도록 만드는데 한계가 있었다. 본 논문에서는, Maes의 행동선택 방법론을 이용하여 간단한 행동을 하도록 진화된 모듈들을 결합함으로써 이러한 문제를 해결하려고 한다. 실험 결과는 이러한 접근방법이 복잡한 환경을 위한 신경망 제어기를 개발하는데 가능성이 있음을 보여주었다.

  • PDF

Evolutionary Learning of Mobile Robot Behaviors (이동 로봇 행위의 진화)

  • 이재구;심인보;윤중선
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1105-1108
    • /
    • 2003
  • Adaptation in dynamic environments gains a significant advantage by combining evolution and learning. We propose an on-line, realtime evolutionary learning mechanism to determine the structure and the synaptic weights of a neural network controller for mobile robot navigations. We support our method, based on (1+1) evolutionary strategy, which produces changes during the lifetime of an individual to increase the adaptability of the individual itself, with a set of experiments on evolutionary neural controller for physical robots behaviors.

  • PDF

Evolvable Hardware Implementation of Smart Sensors Using Genetic Programming (유전자 프로그래밍을 이용한 지능센서의 진화 하드웨어 구현)

  • 석호식;장병탁
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.10b
    • /
    • pp.99-101
    • /
    • 2000
  • 본 논문에서는 유전자 프로그래밍을 이용하여 판단 기준을 탐색할 수 있는 자율 이동로봇의 센서 해석회로를 진화 하드웨어상에 구현하였다. 자율 이동 로봇은 센서 정보를 통하여 환경 정보를 인지하고 자율성을 유지한다. 그러나 기존의 센서 체계는 첫째, 잡음의 영향을 심하게 받으며, 둘째 같은 환경에 대하여 동일한 종류의 센서라 할지라도 심한 편차가 존재하는 관측값을 출력한다는 문제점을 갖는다. 따라서 센서의 특성에 대한 고려없이 판단기준을 결정하면 로봇의 정확한 환경인지를 보장할 수 없게 된다. 본 논문에서는 센서 입력값 해석 기준을 센서 특성에 맞추어 적응적으로 변화시키는 센서를 구현하여 입력 해석과정에서의 정확도를 향상하였다.

  • PDF

Legged Robot Trajectory Generation using Evolved Fuzzy Machine for IoT Environments (IoT 환경을 위한 진화된 퍼지머신을 이용한 로봇의 궤적생성)

  • Kim, Dong Won
    • Journal of Internet of Things and Convergence
    • /
    • v.6 no.3
    • /
    • pp.59-65
    • /
    • 2020
  • The Internet of Things (IoT) era, in which all items used in daily life are equipped with a network connection function, and they are closely linked to increase the convenience of life and work, has opened wide. Robots also need to develop according to the IoT environment. A use of new type of evolved fuzzy machine (EFM) for generating legged robot trajectory in IoT enviornmentms is discussed in this paper. Fuzzy system has been widely used for describing nonlinear systems. In fuzzy system, determination of antecedent and consequent structures of fuzzy model has been one of the most important problems. EFM is described which carries out evolving antecedent and consequent structure of fuzzy system for legged robot. To generate the robot trajectory, parameters of each structure in the fuzzy system are tuned automatically by the EFM. The results demonstrate the performance of the proposed approach for the legged robot.

Reinforcement Learning Based Evolution and Learning Algorithm for Cooperative Behavior of Swarm Robot System (군집 로봇의 협조 행동을 위한 강화 학습 기반의 진화 및 학습 알고리즘)

  • Seo, Sang-Wook;Kim, Ho-Duck;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.5
    • /
    • pp.591-597
    • /
    • 2007
  • In swarm robot systems, each robot must behaves by itself according to the its states and environments, and if necessary, must cooperates with other robots in order to carry out a given task. Therefore it is essential that each robot has both learning and evolution ability to adapt the dynamic environments. In this paper, the new polygon based Q-learning algorithm and distributed genetic algorithms are proposed for behavior learning and evolution of collective autonomous mobile robots. And by distributed genetic algorithm exchanging the chromosome acquired under different environments by communication each robot can improve its behavior ability Specially, in order to improve the performance of evolution, selective crossover using the characteristic of reinforcement learning is adopted in this paper. we verify the effectiveness of the proposed method by applying it to cooperative search problem.

Area Search of Multiple UAV's based on Evolutionary Robotics (진화로봇공학 기반의 복수 무인기를 이용한 영역 탐색)

  • Oh, Soo-Hun;Suk, Jin-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.4
    • /
    • pp.352-362
    • /
    • 2010
  • The simultaneous operation of multiple UAV's makes it possible to enhance the mission accomplishment efficiency. In order to achieve this, easily scalable control algorithms are required, and swarm intelligence having such characteristics as flexibility, robustness, decentralized control, and self-organization based on behavioral model comes into the spotlight as a practical substitute. Recently, evolutionary robotics is applied to the control of UAV's to overcome the weakness of difficulties in the logical design of behavioral rules. In this paper, a neural network controller evolved by evolutionary robotics is applied to the control of multiple UAV's which have the mission of searching limited area. Several numerical demonstrations show the proposed algorithm has superior results to those of behavior based neural network controller which is designed by intuition.

Evolution and Behavior Analysis of Neural Networks based on Cellular Automata (셀룰라 오토마타 기반 신경망의 진화 및 행동분석)

  • Song, Geum-Beom;Jo, Seong-Bae
    • Journal of KIISE:Software and Applications
    • /
    • v.26 no.4
    • /
    • pp.453-461
    • /
    • 1999
  • 최근 들어 생물학적 두뇌에 대한 관심이 높아지고 있으며, 그에 따라 인공두뇌의 개발이나 두뇌의 기능을 밝히고자 하는 시도가 활발히 이루어지고 있다. 특히 셀룰라 오토마타는 간단한 규칙들의 조합으로 복잡한 현상을 표현하는 모델로 복잡한 두뇌를 표현하기에 적합한 모델로 복잡한 두뇌를 표현하기에 적합한 모델일 기대된다. 셀룰라 오토마타 상에서 특정한 기능을 갖도록 신경망 모듈들을 진화시킨 후, 이들을 결합하여 인공두뇌를 개발하고자 하는 시도가 있다. 본 논문에서는 이러한 접근방식의 유용성을 보여주기 위하여 적당한 크기의 셀룰라 오토마타 공간에서 신경망을 만들어내어 이동 로봇의 제어기를 진화방법으로 구성하고자한다. 실험결과 로봇이 벽과 충돌하지 않고 잘 움직일 수 있도록 진화된 제어기를 얻을 수 있었다. 또한 다각적인 분석과정을 통해 진화된 제어기의 구조와 그 작동과정으 밝혀내고자 하였다.

Realtime Evolutionary Learning of Mobile Robot Behaviors (이동 로봇 행위의 실시간 진화)

  • Lee, Jae-Gu;Shim, In-Bo;Yoon, Joong-Sun
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.816-821
    • /
    • 2003
  • Researchers have utilized artificial evolution techniques and learning techniques for studying the interactions between learning and evolution. Adaptation in dynamic environments gains a significant advantage by combining evolution and learning. We propose an on-line, realtime evolutionary learning mechanism to determine the structure and the synaptic weights of a neural network controller for mobile robot navigations. We support our method, based on (1+1) evolutionary strategy which produces changes during the lifetime of an individual to increase the adaptability of the individual itself, with a set of experiments on evolutionary neural controller for physical robots behaviors. We investigate the effects of learning in evolutionary process by comparing the performance of the proposed realtime evolutionary learning method with that of evolutionary method only. Also, we investigate an interactive evolutionary algorithm to overcome the difficulties in evaluating complicated tasks.

  • PDF