단백질 일차 구조(아미노산 배열)에 대한 상동 검색은 유전자나 단백질의 기능과 진화 과정을 유추하기 위한 필수 연산이다. 그러나 진화 단계가 멀리 떨어진 경우 단백질 일차 구조는 보존되지 않기 때문에 단백질의 공간적 구조에 대한 유사 검색을 통해서만 진화 단계를 유추할 수 있다. 따라서 본 논문에서는 단백질의 공간적 구조를 표현하는 단백질 이차 구조를 대상으로 하여 RDBMS상에 쉽게 구현이 가능한 인덱싱 방안을 제안한다. 제안된 인덱싱 방안은 클러스터링 기법과 LookAhead 개념을 활용하여 Exact Match, Range Match, Wildcard Match 질의를 신속하게 처리한다. 제안된 방법의 우수성을 검증하기 위하여 실제의 단백질 데이타를 대상으로 성능 평가를 수행하였다. 실험 결과에 의하면, 제안된 방법은 기존의 방법과 비교하여 Exact Match의 경우 6.3배까지, Range Match의 경우 3.3배까지, Wildcard Match의 경우 1.5배까지의 개선된 검색 성능을 가지는 것으로 나타났다.
최근 들어 확률 분포를 개체군으로부터 추정하여 보다 효율적으로 최적화를 해결하려는 연구가 진행되고 있다. 특히 복잡한 문제의 해결을 위해서 혼합 분포가 사용되고 있다. 그러나 이 경우 몇 개의 성분으로 혼합 분포를 나타낼 것인가를 결정하기 어려운 문제가 있으며, 각 분포에 의하여 표현되는 이전 세대의 우수한 부분 해들을 잘 결합하지 못하는 단점이 있다. 본 논문에서는 변분 베이지안 혼합 인자 분석(variational Bayesian mixtures of factor analyzers) 기법을 사용한 개체군의 분포 추정을 통해 실수 공간에서의 최적화 문제를 해결하는 방법을 제안한다. 이 기법은 혼합 분포의 개수 추정을 자동화하며, 잠재 변수(latent variable)를 사용하여 각 분포가 표현하는 세부 개체군 내에 포함된 부분 해들의 혼합을 효율적으로 수행할 수 있다. 잘 알려진 함수 최적화 문제들에 대해 다른 분포 추정 진화 알고리즘과 비교하여 제안하는 방법의 우수성을 검증하였다. 또한 시스템 생물학에서 다루고 있는 생화학 네트워크의 동적 모델링을 위한 매개변수 추정도 성공적으로 수행하였다.
죄수 딜레마 게임은 게임 이론의 대표적인 사례로 많은 경제학자, 사회과학자 및 컴퓨터 과학자가 관심을 가지고 연구하고 있다. 근래에는 죄수 딜레마 게임 분석을 위해 유전 알고리즘, 입자 군집 최적화 등의 진화 연산 기법을 적용한 계산적 접근에 대한 연구가 활발히 이루어져 왔다. 본 연구에서는 3가지의 서로 다른 이진입자 군집 최적화 기법을 사용하여 2명 또는 그 이상의 플레이어가 참여하는 반복 죄수 딜레마 게임에 대한 전략을 진화시켜보고자 한다. 반복 죄수 딜레마 게임에 3가지 버전의 이진 입자 군집 최적화를 적용하여 실험한 결과 자신의 이득을 최대화하기 위한 이기적인 참가들 사이에서도 상호 협력 관계가 구축될 수 있음을 확인하였나 참여자가 많을수록 상호 협력 관계가 구축이 어려워 짐을 확인하였다.
본 논문에서는 전형적인 Linear Discriminant Analysis을 확장시켜 전체 입력공간을 다수의 지역공간으로 분할하고 분할된 공간에 Local Linear Discriminant Analysis 기반으로 하여 패턴 분류 규칙을 설계하는 새로운 방법을 제안한다. 전체 입력공간을 여러 개의 지역공간으로 분할하기 위한 방법으로 unsupervised clustering의 대표적인 방법인 k-Means 클러스터링 기법과 최적화 알고리즘인 차분 진화 연산 알고리즘을 사용한다. 제안된 알고리즘의 성능 평가를 위해 기존의 패턴 분류기와 비교 결과를 제시한다.
도시 내 교통혼잡이 증가됨에 따라 최단경로 탐색방법뿐만이 아니라 동일 목적지까지의 여러 가지 경로(준 최단경로)를 제시해 줌으로써 교통량을 효과적으로 분산시킬 수 있는 대체경로 탐색기법에 대한 관심이 고조되고 있다. 본 논문에서는 대체 경로의 유효성을 평가하는 성능지표를 제안하고, 복수개의 우수해 탐색에 유리한 진화 프로그램에 기초한 효과적인 대체경로 탐색기법을 제시한다. 기존 방법(k-th 최단경로 방법)의 문제점이었던 대체 경로들간의 유사성이 제안된 방법에서는 해결된다. 가상 도로망을 통한 컴퓨터 시뮬레이션의 결과로서 제안된 방법이 기존 방법보다 교통량 분산(경로들간의 상이성)측면에서 훨씬 더 우수함을 확인하였다.
배전 변전소 무인화는 변전소 자동화 기술을 기반으로 하기 때문에 변전소 운영의 안정성과 신뢰성을 확보하기 위해서는 변전소내의 각 설비들이 원격감시제어, 자율제어 그리고 사고를 사전에 방지하거나 인지하기 위한 설비진단을 지원할 수 있는 디지털 지능형 전력설비(IED)로 진화돼야 한다. 따라서 본 연구에서는 변전소내의 각 설비 IED드로부터 제공되는 데이터 정보로부터 무인화 변전소 운영의 안정성과 신뢰성을 확보할 수 있도록 지원하는 무인화 변전소 운전지원 지능형 솔루션을 설계하고, 디지털 수배전반의 지능형 제어모듈의 추배전 변전소 무인화는 변전소 자동화 기술을 기반으로 하기 때문에 변전소 운영의 안정성과 신뢰성을 확보하기 위해서는 변전소내의 각 설비들이 원격감시제어, 자율제어 그리고 사고를 사전에 방지하거나 인지하기 위한 설비진단을 지원할 수 있는 디지털 지능형 전력설비(IED)로 진화돼야 한다. 따라서 본 연구에서는 변전소내의 각 설비 IED드로부터 제공되는 데이터 정보로부터 무인화 변전소 운영의 안정성과 신뢰성을 확보할 수 있도록 지원하는 무인화 변전소 운전지원 지능형 솔루션을 설계하고, 디지털 수배전반의 지능형 제어모듈의 추론 메카니즘, 상위 감시 제어 시스템과의 자유로운 데이터 교환을 위한 통신기법을 설계한다. 론 메카니즘, 상위 감시 제어 시스템과의 자유로운 데이터 교환을 위한 통신기법을 설계한다.
본 연구에서는 고차 데이터 분류를 위해 순차적 베이지만 샘플링 기반의 진화연산 기법을 이용한 하이퍼네트워크 모델의 학습 알고리즘을 제시한다. 제시하는 방법에서는 모델의 조건부 확률의 사후(posterior) 분포를 최대화하도록 학습이 진행된다. 이를 위해 사전(prior) 분포를 문제와 관련된 사전지식(prior knowledge) 및 모델 복잡도(model complexity)로 정의하고, 측정된 모델의 분류성능을 우도(likelihood)로 사 용하며, 측정된 사전분포와 우도를 이용하여 모델의 적합도(fitness)를 정의한다. 이를 통해 하이퍼네트워크 모델은 고차원 데이터를 효율적으로 학습 가능할 뿐이 아니라 모델의 학습시간 및 분류성능이 개선될 수 있다. 또한 학습 시에 파라미터로 주어지던 하이퍼에지의 구성 및 모델의 크기가 학습과정 중에 적응적으로 결정될 수 있다. 제안하는 학습방법의 검증을 위해 본 논문에서는 약 25,000개의 유전자 발현정보 데이터셋에 대한 분류문제에 모델을 적용한다. 실험 결과를 통해 제시하는 방법이 기존 하이퍼네트워크 학습 방법 뿐 아니라 다른 모델들에 비해 우수한 분류 성능을 보여주는 것을 확인할 수 있다. 또한 다양한 실험을 통해 사전분포로 사용된 사전지식이 모델 학습에 끼치는 영향을 분석한다.
데이터마이닝 기법의 클러스터링 알고리즘은 생물정보학에서 데이터 셋의 사전 정보를 고려하지 않고 중요한 유전적, 생물학적 상호작용을 찾기 위하여 적용되고 있다. 그러나 다양한 형식의 수많은 알고리즘들은 바이오데이터의 다양한 특성들과 실험의 가정 때문에 다른 클러스터링 결과들을 만들 수 있다. 본 논문에서는 바이오 데이터 셋의 특성에도 적합하면서 양질의 클러스터링 결과를 만들기 위한 새로운 방법을 제안한다. 이 방법은 여러 가지 클러스터링 알고리즘의 결과들을 유전자 알고리즘의 기본 개념인 진화적 환경에서 가장 적합한 형질을 선택하는 문제와 결합하였다. 그리고 실제 데이터 셋을 이용하여 우리의 제안하는 방법을 증명하고 실험 결과로 최적의 클러스터 결과를 보인다.
현재 사이버 위협은 계속적으로 증대되고 있으며, 진화하는 악성코드에 의한 보안 사고의 피해도 점점 더 커져가고 있다. 또한 기존의 보안체계를 회피한 은밀한 악성코드 기반의 공격으로 기밀 데이터 및 개인정보 유출이 지속적으로 증가하는 추세이다. 그러나 기존의 블랙리스트 기반의 시그니처 탐지 기법으로는 진화된 "알려지지 않은 악성코드"의 대응에 한계가 있다. 본 연구에서는 인가된 프로그램의 위변조 여부, 인가된 프로그램의 실행여부, 운영체제 주요 파일에 대한 변경 여부 등 복합적인 분석을 통한 탐지 및 식별로 악성코드 행위를 차단하는 화이트리스트 기반 프로그램 실행 통제 방안을 제시하고자 한다.
본 논문은 비선형 시스템의 새로운 퍼지 제어기 설계 기법을 제안한다. 퍼지 제어기는 비선형 시스템을 제어하는데 많이 사용되는 기법 중에 하나이다. 퍼지 제어기를 설계하는 것은 시스템에 대한 깊은 수학적인 접근이 필요로 하기 때문에 수학적 배경 없이 설계하기 힘들다. 본 논문에서는 이를 해결하기 위해 길은 수학적인 접근이 아닌 지능적인 접근 방법을 사용하여 안정화된 퍼지 제어기의 설계하는 기법을 제안한다. 제안된 기법은 퍼지 제어기의 안정화 조건을 만족시키는 제어 파라메터를 전략 기반 유전 알고리즘을 사용하여 동정한다. 전략 기반 유전 알고리즘은 제어기의 안정화 조건을 만족시키는 해를 찾기 위해 전략적으로 교차와 돌연변이를 변화시킨다. 최종적으로 모의 실험을 통해 제안된 기법의 우수성을 확인한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.