• 제목/요약/키워드: 진화프로그래밍

검색결과 87건 처리시간 0.022초

점진형 유전프로그래밍과 거리기반형 진화연산자 (Steady State Genetic Programming and Distance based Genetic Operator)

  • 방철혁;서기성
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국지능시스템학회 2007년도 추계학술대회 학술발표 논문집
    • /
    • pp.324-327
    • /
    • 2007
  • 유전프로그래밍(GP)은 GA, ES, 그리고 EA등에 비해 구조의 복잡함으로 인해 상대적으로 진화방식 및 진화연산자에 대한 연구가 미진한 실정이다. 본 논문에서는 유전프로그래밍에 대한 점진형 진화 방식과 트리 깊이 및 부모간의 거리를 기반으로 한 새로운 진화연산자를 제안한다. 이항식 벤치마크 문제에 대하여 실험을 수행하였고, 세대형 진화 방식 및 기존 연산자와의 성능을 비교하였다.

  • PDF

온라인 적응 학습을 위한 유전자 프로그래밍의 진화 하드웨어 구현 (Implementation of Genetic Programming on Evolvable Hardware for On-line Adaptive Learning)

  • 석호식;이광주;장병탁
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2000년도 봄 학술발표논문집 Vol.27 No.1 (B)
    • /
    • pp.214-216
    • /
    • 2000
  • 본 논문에서는 유전자 프로그래밍을 이용하여 온라인 적응 학습이 가능 진화 하드웨어의 진화 전략을 구성하였다. 유전자 프로그래밍은 특유의 트리형 개체구조가 여러 개의 프로세스의 합을 통한 복합 임무의 수행 구조로 해석될 수 있다는 이점에 비하여, 하드웨어 구현이 어렵고 crossover 연산자의 사용이 어렵다는 단점등에 의하여 진화 하드웨어의 동적 재구성 알고리즘으로 널리 사용되지 못하였다. 본 논문에서는 유전자 프로그래밍의 이러한 단점을 극복할 수 있는 개체 표현 및 하드웨어 구현 방법을 제안하였으며, 제안된 방법론에 기존의 연구 결과를 결합하여 유전자 프로그래밍의 수행 효율을 높일 수 있는 진화 전략을 구성하였다. 제안된 진화 전략은 자율 이동 로봇 실험에 적용되어 효율성을 확인하였다.

  • PDF

신경회로망의 학습 알고리듬을 이용하여 돌연변이를 수행하는 새로운 진화 프로그래밍 알고리듬 (A New Evolutionary Programming Algorithm using the Learning Rule of a Neural Network for Mutation of Individuals)

  • 임종화;최두현;황찬식
    • 전자공학회논문지C
    • /
    • 제36C권3호
    • /
    • pp.58-64
    • /
    • 1999
  • 진화 프로그래밍은 두 가지 요소로 특징지을 수 있다. 하나는 선택 방법이고 나머지는 돌연변이 규칙이다. 본 논문에서는 신경회로망의 역전파 학습 알고리듬을 이용하여 돌연변이 연산을 수행하는 새로운 진화 프로그래밍 알고리듬을 제안한다. 신경회로망의 학습 알고리듬에서 현재 오차는 진화 프로그래밍의 개체가 진화해 나가야 할 방향을 지정해 주고, 관성은 개체의 변이에 지금까지의 진화 경향을 더해 주어서 빠르게 전역 최적해를 찾도록 하였다. 표준 테스트 함수를 이용하여 제안된 알고리듬의 성능과 강건함을 확인하였다.

  • PDF

유전자 프로그래밍을 이용한 RNA 구조 문법 학습 (Learning of RNA Structural Grammar using Genetic Programming)

  • 남진우;정제균;장병탁
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2003년도 봄 학술발표논문집 Vol.30 No.1 (B)
    • /
    • pp.425-427
    • /
    • 2003
  • RNA는 세포내에서 유전자 발현에 직, 간접적으로 중요한 역할을 하며, RNA 구조는 세포 내에서의 기능과 깊은 연관이 있기 때문에 RNA 구조를 예측하는 것은 중요한 의미를 갖는다, 본 논문에서는 진화연산의 한가지인 유전자 프로그래밍(genetic programming) 방법을 사용하여 염기서열 정보를 참고하는 RNA 구조 문법의 학습 방법을 보여 준다. 이 RNA 구조를 의미하는 문법을 트리(tree)형태의 함수로 코드화(encoding) 한 후 이것을 유전자 프로그래밍 방법으로 진화시킨다. 진화를 통해 최적의 적합도를 갖는 트리의 문법을 테스트 데이터를 통해 평가한 결과 0.893의 특이도(speicificity)와 0.752의 민감도(sensitivity)를 보였다.

  • PDF

진화 프로그래밍을 이용한 다기준 퍼지 제어 (Multicriteria Fuzzy Control using Evolutionary Programming)

  • 김광춘;김종환
    • 한국지능시스템학회논문지
    • /
    • 제4권3호
    • /
    • pp.3-13
    • /
    • 1994
  • 본 논문에서는 진화 프로그래밍을 이용한 다기준 퍼지제어(MFC : Multicriteria Fuzzy Control)를 제안한다. MFC의 기본적인 아이디어는 출력응답의 속성을 분석하여 기존의 퍼지 제어에 퍼지 척도와 퍼지 적분 이론을 적용한 것이다. 퍼지 적분 평가를 위해서 rise time, overshoot, settling time의 세가지 속성이 사용된다. MFC를 통해서 이 세가지 속성을 조정할 수 있다. 진화 프로그래밍은 원하는 조정 특성을 갖도록 MFC의 퍼지 척도를 최적화한다. 모의 실험을 통해서 제안된 방법이 기존의 퍼지 제어보다 우수함을 보인다.

  • PDF

강화학습에 의한 유전자 프로그래밍의 성능 개선 (Performance Improvement of Genetic Programming Based on Reinforcement Learning)

  • 전효병;이동욱;심귀보
    • 한국지능시스템학회논문지
    • /
    • 제8권3호
    • /
    • pp.1-8
    • /
    • 1998
  • 본 논문에서는 유전자 프로그래밍의 성능을 향상시키기 위하여 강화학습법에 기반한 강화 유전자 프로그래밍을 제안한다. 트리구조와 프로그램을 염색체로 가지는 유전자 프로그래밍(GP)은 다른 진화 알고리즘에 비해 염색체의 크기에 제한이 없기 때문에 표현력에 융통성이 많다는 장점이 있다. 그러나 이러한 특징은 반대고 교차 및 돌연변이 연산에 있어서 수렴성을 떨어뜨리는 단점을 나타낸다. 따라서 유전자 프로그래밍은 다른 진화알고리즘에 비해 개체군의 크기 및 진화 세대수를 크게 잡는 것이 일반적이다. 본 논문에서는 유전자 프로그래밍의 이러한 성질을 개선하기 위해서 프로그램에 강화신호를 주어 이것의 보답/벌칙의 정도에 기반한 교차 및 돌연번이 연산을 실행하는 방법을 제안한다. 제안된 방법은 인공개미(Artificial Ant)문제에 적용하여 그 유효성을 입증한다.

  • PDF

진화 프로그래밍을 이용한 안정지수 결정 (Finding Stability Indices Using Evolutionary Programming)

  • 신진욱;김인택;강환일
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2000년도 춘계학술대회 학술발표 논문집
    • /
    • pp.39-42
    • /
    • 2000
  • 진화 프로그래밍은 유전자 알고리즘과 함께 진화 연산 분야에 속하며 넓은 탐색공간에 존재하는 해를 찾는데 유용한 방법으로 알려져 있다. 본 논문에서는 이 두 가지 방법을 비교하기 위해서 Manabe 표준형을 기준으로 사용자의 요구사항에 맞는 스텝응답을 만족하는 계수, 즉 안정지수를 이 두 가지 방법을 적용하였다.

  • PDF

진화 하드웨어상에서 유전자 프로그래밍에 의한 온라인 학습 (On-line Learning by Genetic Programming)

  • 석호식;이광주;이강;장병탁
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 1999년도 가을 학술발표논문집 Vol.26 No.2 (2)
    • /
    • pp.3-5
    • /
    • 1999
  • 본 논문에서는 진화 하드웨어에 기반한 자율 이동 로봇의 온라인 학습 기법에 관하여 소개하고자 한다. 진화 하드웨어는 실행 시간중에 하드웨어 회로 구성을 변경시킬 수 있는 새로운 개념의 FPGA이다. 제어 프로그램은 진화 하드웨어상에 트리 형식으로 구현되며 유전자 프로그래밍을 이용하여 학습하게 된다. 로봇의 환경 탐사가 진행됨에 따라 입력되는 센서 정보에 기반하여 제어 프로그램은 학습을 수행하게 되며, 노드 돌연변이의 유전 연산자를 이용하여 진화한다. 제어 프로그램의 게이트 회로는 학습의 진행에 맞추어 실행 시간중에 보다 적합도가 높은 방향으로 발전한다. 본 논문에서는 진화 하드에어를 이용한 학습 방식과 FPGA 구현 및 로봇 제어에의 응용에 대한 실험 결과 등을 설명할 것이다.

  • PDF

진화로봇(Evolutionary Robotics)

  • 서기성
    • 제어로봇시스템학회지
    • /
    • 제16권1호
    • /
    • pp.44-50
    • /
    • 2010
  • 본 논문에서는 진화로봇의 개념과 기법 및 최근 연구 동향을 소개하고자 한다. 진화로봇의 주요 목표는 지능적이고 자율적인 로봇 또는 제어기를 직접적이고 명시적인 프로그래밍 또는 사람의 개입 없이 자동적으로 구성하는 것이다.

인공 진화에 의한 학습 및 최적화

  • 장병탁
    • 제어로봇시스템학회지
    • /
    • 제1권3호
    • /
    • pp.52-61
    • /
    • 1995
  • 본 고에서는 진화계산의 동작 원리와 이론적 기반에 대해 살펴봄으로써 그 원리를 이해하고 앞으로의 응용가능성에 대하여 고찰하고자 한다. 이를 위해 먼저 대부분의 진화 알고리즘에 공통되는 기본 구성 요소와 계산절차를 기술하고, 진화 알고리즘을 이용하여 특정문제를 풀고자 할 때 고려할 사항에 대하여 기술한다. 다음에는 간단한 응용 문제를 예로 들어 이 문제에 진화 알고리즘을 적용하고 그 동작과정을 추적함으로써 실제 적용에 있어서의 여러 가지 결정사항과 그 수행과정을 구체적으로 살펴본다. 또한 진화 알고리즘의 이론적 배경을 이해하기 위해 스키마와 빌딩 블록 그리고 스키마 정리에 대해서 알아본다. 마지막으로 진화계산방식과 다른 지능적 계산 기술들과의 융합 가능성의 예로서, 유전 프로그래밍에 의한 신경망 구조의 설계 및 학습에 대하여 살펴본다.

  • PDF